

maximize a reward function specific to each task. Selection
of local policies is modeled as a bounded-parameter Markov
decision process (BMDP) [16], a stochastic decision algorithm
where transition probabilities and rewards are a range of real
values. This work builds upon existing techniques that utilize
a BMDP to compute policies for uncertain systems [17] by
maximizing a continuous reward function representing the
task to be executed.

II. PROBLEM FORMULATION

Consider a noisy robot whose dynamics are given by the
following stochastic system:

dx = f(x(t); u(t))dt+ F (x(t); u(t))dw; (1)
x 2 X � Rnx ; u 2 U � Rnu ;

where X and U are compact, w(�) is an nw-dimensional
Wiener process (i.e. Brownian motion) on a probability space
(
;F ;P), and f : X � U ! Rnx and F : X � U !
Rnx�nw are bounded measurable and continuous functions.
It is assumed that the pair (u(�); w(�)) is admissible [18], and
the matrix F (�; �) has full rank. Furthermore, it is assumed
that stochastic process x(t) is fully observable for all t � 0
and stops as soon as it exits the interior of X .

The robot represented by system (1) evolves in workspace
W that consists of regions of interest such as obstacles and
goal regions. Let R � W denote the set of all the regions
of interest, i.e., R = fr1; : : : ; rnr

g where ri is a region of
interest. The object of this work is to develop a theoretical
and computational framework which allows for planning for
system (1) from a high-level specification T given over R. It
is assumed that T consists of an ordered sequence of tasks,
i.e., T = T1 ! T2 ! : : :! TnT

, where each task Ti has an
initial and a terminal condition taking place at times ti0 and
tif , respectively. Furthermore, executing task Ti optimally is
equivalent to maximizing a reward function of the form

Ji = E
h Z tif

ti0

(t�ti0)gi(x(t); u(t))dt+ t
i
fhi(x(tif))

i
; (2)

where gi : X � U ! R and hi : X ! R are bounded
measurable and continuous functions called the reward rate
function and terminal reward function, respectively, and 2
[0; 1) is the discount rate. The function gi returns the reward
received by taking action u(t) at state x(t). The function hi
returns the reward for reaching a terminal state x(tif).

Our ultimate goal is a planning framework for noisy robots
that is capable of both online and optimal planning for com-
plex tasks. In other words, not only can the goal specification
be complex, but it can also change online by modifying
an existing task or adding new tasks. Accommodating both
online requests and generating optimal motion policies is
challenging and ambitious. As a first step toward such a
framework, the proposed method focuses on the problem of
generating control policies online which are near-optimal. A
formal statement of this problem follows.

Problem 1: Given stochastic system (1) representing a
noisy robot in workspace W and specification T , find a

BMDP

BMDP Reward

Policy Generator

Analysis

Stochastic
Dynamics

State
space

Task Specification
(Reward Functions)

Control
policy

Probability
of Success

Abstraction
(Offline Stage)

Planning
(Online Stage)

iMDP

Partition

Local Policies

Fig. 1: A block representation of the approach to Problem 1.

control strategy for the robot online that achieves T and ap-
proximates the reward function Ji given by (2) corresponding
to each task Ti 2 T .

For example, consider a two-task specification for a
stochastic robot. The first task may be time sensitive and
should be completed quickly. In this case, actions would
receive rewards inversely proportional to the distance to the
goal. The second task may require the system to minimize
energy consumption. Therefore, actions requiring more fuel
would receive less reward; the system may take a longer time
to achieve the second task.

A. Approach

This work approaches the problem in two distinct stages.
First, a discretization of the state space is performed. Then
local control policies are computed using the asymptotically
optimal iMDP algorithm; local policies are computed within
a discrete region of the state space with the intent of moving
the system to a neighboring region. The choice of selecting
a policy to transit between regions is abstracted using a
bounded-parameter Markov decision process (BMDP), which
models the transition probabilities and reward of each action
using a range of possible values.

Given the BMDP abstraction, a control policy for the
stochastic system can be quickly computed by optimizing a
reward function over the local policies within the BMDP. That
is, for each task Ti 2 T , a policy which maximizes the reward
function Ji (given in (2)) associated with Ti is obtained by
selecting a local policy within each discrete region. A high-
level diagram of the method appears in Figure 1. Experiments
show that optimal policy selection can be obtained in a matter
of seconds, indicating that the method can be used online.
It is stressed that the final policy over the BMDP is optimal
only with respect to the discretization. Further discussion
of optimality is given in Section V. Details of the Markov
models used in the framework are given in the next section.

III. STOCHASTIC MODELING TECHNIQUES

A. Markov Decision Process

Markov decision processes (MDPs) provide a modeling
framework for decision making in the presence of randomness
where a choice of action must be taken at each state of a
discrete system. A formal definition of an MDP follows.

Definition 1 (MDP): An MDP is a tupleM = (Q;A; P;R),
where:
� Q is a finite set of states;

� A is a set of actions, and A(q) denotes the set of actions
available at state q 2 Q;

� P : Q�A�Q! [0; 1] is a transition probability func-
tion, where P (q; a; q0) gives the transition probability
from state q 2 Q to state q0 2 Q under action a 2 A(q)
and

P
q02Q P (q; a; q0) = 1;

� R : Q � A ! R is a reward function that maps each
state-action pair (q; a), where q 2 Q and a 2 A(q), to
a real value R(q; a).

A policy defines a choice of action at each state of an MDP
and is formally defined as follows.

Definition 2 (Policy): A policy maps states to actions, � :
Q! A. The set of all policies is denoted by �.

Under a fixed policy � 2 �, MDP M becomes a Markov
chain (MC) denoted by M�. Moreover, the probability of
making a transition from q to q0 is given by P�(q; q0) =
P (q; �(q); q0).

B. Bounded-Parameter Markov Decision Process

A bounded-parameter Markov decision process (BMDP)
[16] is an MDP where the exact probability of a state transition
and reward is unknown. Instead, these values lie within a
range of real numbers. A formal definition of a BMDP follows.

Definition 3 (BMDP): A BMDP is a tuple B =
(Q;A; �P ; P̂ ; �R; R̂) where:

� Q is a finite set of states;
� A is a set of actions, and A(q) denotes the set of actions

available at state q 2 Q;
� �P : Q�A�Q! [0; 1] is a pseudo transition probability

function, where �P (q; a; q0) gives the lower bound of the
transition probability from state q to the state q0 under
action a 2 A(q);

� P̂ : Q�A�Q! [0; 1] is a pseudo transition probability
function, where P̂ (q; a; q0) gives the upper bound of the
transition probability from state q to the state q0 under
action a 2 A(q);

� �R : Q � A ! R is a reward function, where �R(q; a)
gives the minimum reward of choosing action a 2 A(q)
at state q 2 Q;

� R̂ : Q � A ! R is a reward function, where R̂(q; a)
gives the maximum reward of choosing action a 2 A(q)
at state q 2 Q.

For all q; q0 2 Q and any a 2 A(q), �P (q; a; �) and P̂ (q; a; �)
are pseudo distribution functions such that 0 � �P (q; a; q0) �
P̂ (q; a; q0) � 1 and

0 �
X
q02Q

�P (q; a; q0) � 1 �
X
q02Q

P̂ (q; a; q0):

Furthermore, a BMDP B defines a set of uncountably many
MDPs Mi = (Q;A; Pi; Ri) where

�P (q; a; q0) � Pi(q; a; q0) � P̂ (q; a; q0);
�R(q; a; q0) � Ri(q; a; q0) � R̂(q; a; q0);

for all q; q0 2 Q and a 2 A(q).

C. Incremental Markov Decision Process

The incremental Markov decision process (iMDP) is an
algorithm that approximates the optimal policy of stochastic
system (1) through probabilistic sampling of the continuous
state and control spaces [10]. iMDP incrementally builds a
sequence of discrete MDPs with probability transitions and
reward functions that consistently approximate the continuous
counterparts. The algorithm refines the discrete MDPs by
adding new states into the current approximate model. At
every iteration, the optimal policy of the approximating MDP
is computed using value iteration. As the number of sampled
states and controls approaches infinity, this policy converges
to the optimal policy of the continuous system (1).

IV. PLANNING FRAMEWORK

A policy reconfiguration framework, as described in Section
II-A, is presented in this section. Local policies within discrete
regions of the state space are computed offline, and selection
of a local policy for each region online is modeled using a
BMDP. Since much of the computation is performed offline,
reconfiguration of local policies relies only on finding a
strategy over the BMDP, a polynomial-time operation. Details
of the framework are given in the following sections.

A. Offline Stage

The offline stage begins by discretizing the state space
into distinct regions, and then computing control policies for
states within each region to transit to all neighboring regions.
Once all control policies have been computed, the transition
probability for each non-terminal state in each policy to reach
all neighboring regions is computed.

1) Discretization: A discretization of the state space is
used to denote the boundaries of the local policies. The choice
of discretization is dependent on the problem to be solved,
the dynamics of the system, and the optimization objective.
A coarse discretization requires computation of relatively few
control policies, but the range of transition probabilities within
a large region is likely to be large as well. Conversely, a fine
discretization is likely to have a small range of transition
probabilities at the expense of computing many local control
policies. Moreover, the number of discrete regions affects the
runtime of the online stage.

The evaluation of this work uses a Delaunay triangulation
[19] of workspace W that respects obstacle boundaries.
Note that W is the projection of X onto RnW where nW
is the dimension of W . Hence, partitioning W induces a
discretization in X . A property of Delaunay triangulations is
that the circumcircle for each triangle does not enclose any
other vertex. In other words, this triangulation maximizes
the minimum angle of all triangles, avoiding skinny triangles.
Using triangles also reduces the number of policies to three
per region, one to transition to each neighboring triangle.

Let D = fd1; : : : ; dnD
g denote the set of discrete regions

(triangles), where nD is the total number of regions. By
definition, di \ dj = ; for all di; dj 2 D. Furthermore, the
triangulation is performed with respect to the regions of
interest in R � W . That is, each region of interest r 2 R

(a) (b) (c)

Fig. 2: Concepts of offline (local) policy generation.
(a) A policy is computed to each neighboring region.
(b) Terminal states bleed into the surrounding area.
(c) Terminal states within the desired destination have high
reward; all others have negative reward.

is decomposed into a set of triangles Dr � D such that for
r; r0 2 R where r 6= r0, Dr \Dr0 = ;. A demonstration of
this triangulation is shown in Figures 3a and 4a.

2) Local Policy Generation: Control policies within each
discrete region of the state space are computed which take
the system to each of the neighboring discrete regions; the
number of local policies in each region is equal to the number
of its neighbors (Figure 2a). Generation of each local policy
uses the iMDP algorithm [10].

Formally, a local policy �id is a Markov chain for tran-
sitioning between discrete region d and d’s neighbor along
face i. Let Xd denote the set of sampled states in region d
and zk denote the discrete MDP process that approximates
continuous system (1) in region d. Policy �id is calculated
by maximizing the discrete reward function corresponding to
the (discounted) probability of success:

J iiMDP(xd; �
i
d(xd)) = E[tkN hiiMDP(zkN

)jz0 = xd]; (3)

where hiiMDP(�) is the terminal reward function, is the
discount rate, tk is the total time up to step k, kN is the
expected first exit time of zk from the discrete region, and
zkN

is a terminal state (i.e., a sampled state in one of the
neighboring regions) in the approximating MDP. The method
of sampling the terminal states and the assignment of their
reward values are explained below.

Each region considers a fixed area around the discrete
geometry as terminal, shown in Figure 2b. States from this
fixed area can then be sampled uniformly as terminal states
in the MDP. Terminal states that lie in the desired destination
region of the policy (i.e., neighbor that shares face i) yield
a high terminal reward. Terminal states that are not in the
desired destination region are treated as obstacle states (zero
reward) to encourage a policy which avoids all regions other
than the destination (Figure 2c).

The use of the terminal region around the discrete geometry
has the added benefit of ensuring a well-connected final policy.
If, instead, the terminal states for the policy were those that
lie exactly on the border of two regions, the control policy
would exhibit very short control durations for states near the
border since the boundary condition must be met exactly;
states outside of the terminal region are considered obstacles.
These small durations can lead to oscillations or deadlocks
at the boundary. By allowing incursions into the next region,
continuity between disjoint policies is ensured since relatively
long control durations are valid for all states in the region.

3) Markov Chain Evaluation: Evaluating the probability
for each state in a region to end up at each terminal state can
be computed using an absorbing Markov chain analysis [20].
These probabilities are used later in the BMDP abstraction.
Let L be the one-step transition probability matrix between
transient states. Then the probability of reaching a transient
state from any other transient state in any number of discrete
steps is given by the matrix B = (I � L)�1, where I is the
identity matrix. Let C be the matrix of one-step probabilities
between transient and terminal states. Then the absorbing
probabilities are given by E = BC, where the probability
of transient state i being absorbed by terminal state j is the
entry (i; j) in the matrix E.

B. Online Stage

The online stage utilizes all of the data in the offline stage
to construct a BMDP which is used to find an optimal selection
of local policies for a particular task.

1) BMDP Construction: In the BMDP model, each discrete
region d 2 D is associated with one state of the BMDP
q 2 Q. The actions available at each state of the BMDP
A(q) correspond to the policies computed for the associated
region d. For instance, in the case where d is a triangle,
A(q) = fa1

q; a
2
q; a

3
qg, where aiq is policy �iq which takes

system (1) out of region d from facet i.
Recall that each state-action pair (q; aiq) of the BMDP

is associated with a range of transition probabilities
[�P (q; aiq; q

0); P̂ (q; aiq; q
0)]. These probabilities are the range

of transition probabilities from d to d0 under policy �id. Let
pr(xd; �

i
d; d
0) denote the transition probability of the iMDP

sampled state xd in region d to the neighboring region d0

under policy �id. These probability values can be calculated
using the Markov chain evaluation method described in
section IV-A.3. Then, the BMDP upper- and lower-bound
transition probabilities are given as:

�P (q; aiq; q
0) = min

xd2Xd

pr(xd; �
i
d; d
0);

P̂ (q; aiq; q
0) = max

xd2Xd

pr(xd; �
i
d; d
0);

where Xd is the set of states sampled by iMDP within region
d to find local policy �id, and d and d0 are the associated
discrete regions to the BMDP states q and q0, respectively.
Note that these probabilities do not change depending on the
task and can be computed during the offline phase.

Note that for �P and P̂ to be correct in the context of
a BMDP, for each action their sum must be � 1 and � 1
respectively. The following lemma proves this statement.

Lemma 1: For policy �id, the following properties hold.X
d02D

min
xd2Xd

pr(xd; �
i
d; d
0) � 1;X

d02D

max
xd2Xd

pr(xd; �
i
d; d
0) � 1:

A formal proof is omitted for space considerations, but the
idea begins by presuming one state in the policy has the
minimum probability to reach all other neighboring regions.
These probabilities sum to one. As each additional state is

checked, the minimum probability to reach a particular region
can only decrease, ensuring that the sum over the minimum
probabilities is at most one. A similar argument shows that
the sum over maximum probabilities is at least one.

To simplify notations and improve clarity, with an abuse
of the notation q is used to refer to both the BMDP state and
its associated discrete region, and � is used to point to both
a local policy and the corresponding BMDP action.

2) BMDP policy generation: Once the BMDP abstraction
is created, a policy can be computed for each task Ti 2 T .
Recall that Ti has an associated reward function Ji as shown
in (2). The discrete reward interval for each BMDP state-action
pair can be computed from the continuous-time function Ji.
Theorem 1 shows the method to calculate these reward values.

Theorem 1: Given stochastic system (1), continuous re-
ward rate function g(x; u), approximating MDP process zk in
region q and local policy �, the BMDP reward functions are:

�R(q; �) = min
xq2Xq

E
h�kq�1X

i=0

tig(zi; �zi
)�t(zi; �zi

)
���z0 = xq

i
;

R̂(q; �) = max
xq2Xq

E
h�kq�1X

i=0

tig(zi; �zi
)�t(zi; �zi

)
���z0 = xq

i
;

where �kq is the expected first exit time step of zk from Xq

and tk is the total time up to step k.
A formal proof is omitted due to space limitations. The

main idea is to decompose the continuous reward function
(2) using the analysis from [18] to derive the discrete
approximation of (2) over the BMDP. Given the approximation,
the range of rewards for each state q 2 Q is computed by
taking the min and max over the expected reward for each
state in the underlying policy, resulting in �R and R̂.

Note that the reward function g(x; u) refers to the notion
of the reward for a single action. In many applications, g
corresponds to notions like energy usage or fuel consumption
and is invariant to the task. In such a case, �R and R̂ can
be computed offline. For general applications, however, �R
and R̂ must be computed online to optimize for each task. It
is argued, however, that computation of these values can be
performed fast, within a few seconds.

Computing �R and R̂ for each local policy requires
finding the expected discounted reward, where the reward
at transient states is g(xq; �(xq)), and terminal reward is
zero. These values can be computed using value iteration
where the discount factor is �t(xq;�(xq)). Alternatively, a
system of linear equations can be solved for more consistent
computation times. For instances where there are a large
number of discrete regions, the size of the policies within
each region is expected to be small (i.e., hundreds of states)
and can be solved in milliseconds.

Since the BMDP is defined over a range of transition
probabilities and reward values, an optimal policy over the
BMDP results in a range of expected values [�V (q), V̂ (q)]
for each state q 2 Q. Computing these values is performed
using interval value iteration (IVI) [16], analogous to value
iteration. The only difference is that representative MDPs

are selected at each iteration to compute �V (q) and V̂ (q).
MDP selection is problem dependent. For the evaluation of
this work (section VI), a pessimistic policy is computed
which maximizes the lower bound �V (q). To ensure that IVI
maximizes the reward function properly, the discount factor
must be chosen carefully to reflect the time taken to transition
between regions in the discretization. The following lemma
gives this value and proves its correctness.

Lemma 2: The dynamic programming formulas to maxi-
mize the discrete approximation of (1) are:

�V (q) = max
�2A

�
�R(q; �) + �T (xq;�)

X
q02Q

P IVI(q; �; q
0) �V (q0)

�
;

V̂ (q) = max
�2A

�
R̂(q; �) + �T (xq;�)

X
q02Q

�PIVI(q; �; q
0)V̂ (q0)

�
;

where Q is the set of states in the BMDP, P IVI and �PIVI are the
transition probabilities of the MDP representatives selected by
IVI for transitioning between states q and q0, and �T (xq; �)
is the expected first exit time of policy � from q with the
initial condition of z0 = xq .
Proof is omitted due to space, but these equations are a direct
result of the discrete reward function derived in Theorem 1.

Computation of �T (xq; �) can be performed offline for
each xd in every local policy using value iteration, replacing
rewards with holding time for transient states. Online, the
value of �T (xq;�) can be retrieved using the same xq which
minimizes �R (maximizes R̂).

Given a policy over the BMDP computed using IVI,
a complete control policy over the entire space can be
constructed by concatenating the local policies that correspond
to the actions selected by IVI. States that lie outside of the
discrete region for each local policy are discarded during this
process since they are treated as terminal during the offline
computation and do not have controls associated with them.
Since IVI runs in polynomial time, and the number of states
in the BMDP is radically smaller than the total number of
states in the local policies, it is expected that the runtime of
IVI will be very short. This implies that a complete control
policy to different goal locations can be computed online.

V. ANALYSIS

A brief discussion is given in this section regarding the
quality of the resulting BMDP policy. It is possible to quickly
compute the probability of success for the resulting policy.
By collapsing the terminal states into goal or obstacle, the
computation reduces to maximum reachability probability
of the goal which can be solved using a system of linear
equations. Since the policy will have relatively few non-zero
probabilities, the probability of success for policies with
hundreds of thousands of states can be computed in seconds.

It is important to note that the policy over the BMDP
optimizes the continuous reward function (2), and is proven
in Theorem 1 and Lemma 2. Optimality does not extend
to the local policies since these maximize the probability
of transiting between neighboring regions (3). For the local
policies to be optimal, expected reward at the local terminal
states and the action reward function g must be known.

