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Integrating Temporal Reasoning and
Sampling-Based Motion Planning for Multi-Goal

Problems with Dynamics and Time Windows
Stefan Edelkamp1, Morteza Lahijanian2, Daniele Magazzeni1, and Erion Plaku3

Abstract—Robots used for inspection, package deliveries, mov-
ing of goods, and other logistics operations are often required
to visit certain locations within specified time bounds. This gives
rise to a challenging problem as it requires not only planning
collision-free and dynamically-feasible motions but also reasoning
temporally about when and where the robot should be. While
significant progress has been made in integrating task and motion
planning, there are still no effective approaches for multi-goal
motion planning when both dynamics and time windows must
be satisfied. To effectively solve this challenging problem, this
paper develops an approach that couples temporal planning
over a discrete abstraction with sampling-based motion planning
over the continuous state space of feasible motions. The discrete
abstraction is obtained by imposing a roadmap which captures
the connectivity of the free space. At each iteration of a core
loop, the approach first invokes the temporal planner to find
a solution over the roadmap abstraction. In a second step, the
approach uses sampling to expand a motion tree along the regions
associated with the discrete solution. Experiments are conducted
with second-order ground and aerial vehicle models operating
in complex environments. Results demonstrate the efficiency and
scalability of the approach as we increase the number of goals
and the difficulty of satisfying the time bounds.

Index Terms—Motion and Path Planning, Task Planning,
Motion Control, Autonomous Vehicle Navigation.

I. INTRODUCTION

Time is money, and plans that lack temporal constraints
are often impractical as robots are increasingly utilized in
complex missions in home, social, and industrial applications.
Planning in these cases, however, is challenging. First, tasks
are complex and highly time sensitive, often requiring a robot
to finish the task or reach certain locations within specified
time bounds. Second, the robot motions must satisfy the
underlying dynamics, which are often nonlinear, noholonomic,
and high dimensional. While significant progress has been
made in integrating task and motion planning, there has not
been any approach for multi-goal motion planning that can
effectively take into account both dynamics and time windows.
The main contribution of this paper is the first effective
approach for this challenging problem.

While there are temporal planners [1], [2] that can handle
tight temporal constraints and plan tasks for complex systems
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Fig. 1. An example of a multi-goal motion-planning problem with time
windows where the snake model is required to reach each goal within a
specified time window. Images are best viewed in colors and on screen. Video
of solutions obtained by our approach for this and other scenarios can be found
at https://goo.gl/LKrU9Z

[3], [4], it remains difficult to incorporate motion planning
with dynamics directly into temporal planners. Some work
has been done in this direction by considering an abstract
symbolic representation of the continuous state space based
on waypoints [5]. While such an approach can work with
small problems with simple dynamics, it cannot scale to large
problems with high-dimensional continuous state spaces and
complex dynamics, which is the focus of this paper. The dy-
namics give rise to two-boundary value problems which often
make it impossible to precisely connect the waypoints [6].

On the other hand, motion planners based on probabilistic
sampling have made it possible to explore high-dimensional
continuous state spaces, taking into account the obstacles and
the robot dynamics [7]. Motion planners such as DROMOS [8]
can even plan motions to reach multiple goals by using a TSP
solver to guide sampling-based motion planning. DROMOS,
however, does not take into account time windows for visiting
the goals or any other temporal information.

Incorporating the temporal information is necessary in many
logistics applications where the robot has to reach certain
locations within specified time windows. Fig. 1 provides an
illustration. Time windows make planning harder since plan-
ning decisions in the beginning can have detrimental effects
later on as trajectories should satisfy the temporal constraints.
As an example, the robot may have to go through narrow
passages to reduce the distance traveled instead of open areas,
which are easier to plan for but could lead to longer solutions
that would violate time windows.

To effectively solve multi-goal problems with dynamics and
time windows, we develop a multi-layered framework that uses
temporal planning to guide sampling-based motion planning.
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This is a key contribution over DROMOS, which does not
incorporate any temporal information. To facilitate temporal
reasoning, a discrete abstraction is obtained via a roadmap
that captures the connectivity of the free space but ignores
dynamics. To account for the dynamics, a motion tree is
expanded in the continuous state space by adding collision-
free and dynamically-feasible trajectories as branches. A key
contribution is the partition of the motion tree into equivalence
classes based on the discrete abstraction and temporal infor-
mation. The partition allows leveraging temporal reasoning
to obtain temporal plans that indicate the order and times in
which the remaining goals should be visited. This information
guides the sampling-based layer which seeks to expand each
selected equivalence class along its temporal plan. To promote
efficiency, preference is given to equivalence classes associated
with short temporal plans. When the expansion along a tempo-
ral plan becomes challenging, penalties are applied to promote
expansions along other temporal plans. The synergy of these
layers makes it possible to intelligently explore the order of
goal visits while accounting for the continuous dynamics and
time constraints.

To the best of our knowledge, the proposed framework is
the first approach for multi-goal motion planning that can
effectively take into account both complex dynamics and
time windows over goal visits. The framework is agnostic
to the inner workings of the temporal planner, so it can be
coupled with any temporal planner. Experiments with ground
and aerial vehicle models operating in complex environments
demonstrate the efficiency and scalability of the approach as
we increase the number of goals and tighten the time bounds.

Related Work: AI planning has made great progress in
handling tasks and temporal constraints. PDDL2.1 [9] extends
PDDL to allow durative actions, continuous resources, and
time windows. Several temporal planners are available [1],
[2], [10], [11].

For motion planning, sampling-based approaches have been
effective in solving challenging problems for high-dimensional
systems with nonlinear dynamics by selectively exploring the
continuous state space of feasible motions [7]. Such success
has been possible by considering simpler tasks, such as moving
to a goal region while avoiding collisions. In recent years, there
has been a push to increase the capabilities of sampling-based
approaches. There are now motion planners that incorporate
specifications given by Linear Temporal Logic (LTL) [12],
[13]. LTL has also been used for controller synthesis [14].
LTL, however, cannot express time durations, only the order
of events. Sampling-based motion planning has also been
used with a STRIPS planner for a pick-and-place task [15],
but without any temporal constraints. As a result, none of
these approaches can be used to solve the multi-goal motion-
planning problem with time windows.

Signal Temporal Logic (STL) [16] extends LTL to allow
time windows. STL planners [17], [18] follow an optimization
formulation to incorporate nonlinear constraints and system
dynamics. This is computationally expensive, e.g., mixed
integer-linear programs are NP-hard, making STL planners
mostly suitable for systems with simple dynamics. For real-
istic systems that have complex dynamics, the existing STL

Fig. 2. Vehicle models of a car, snake, and blimp used in the experiments.

planning techniques are impractical.

II. PROBLEM FORMULATION

1) World and Robot Models: The world W has obstacles
O = {O1, . . . ,Om} and goal regions R = {R1, . . . ,Rn}.
The robot dynamics are described by differential equations
ṡ = f(s, u), where s ∈ S (state space) and u ∈ U (control
space). The robot motion is encapsulated by the function

snew ← SIMULATE(s, u, f, dt),

which numerically integrates f to compute the new state snew
obtained by applying u to s for one time step dt.

Fig. 2 shows the car, snake, and blimp models used in the
experiments. The motion equations of the car are defined as

ẋ = v cos(θ) cos(ψ), ẏ = v sin(θ) cos(ψ), (1)
θ̇ = v sin(ψ)/L, v̇ = uacc, ψ̇ = uω, (2)

where (x, y, θ, v, ψ) ∈ S denotes the position, orientation,
velocity, and steering angle; (uacc, uω) ∈ U denotes the
acceleration and steering rate; and L denotes the axle length.

The vehicle can be made to fly by adding acceleration
along the z axis as control input and augmenting the motion
equations with ż = vz, v̇z = uaccz .

As another example, a snake model can be obtained as a car
pulling several trailers by setting the hitch distance H between
the links to a small value and augmenting f to include the
changes that occur to each trailer as

θ̇i =
v

H
(sin(θi−1)− sin(θ0))

∏i−1
j=1 cos(θj−1 − θj), (3)

where θ0 = θ, N is the number of trailers, and θi is the
orientation of the i-th trailer.

2) Motion Trajectory: A dynamically-feasible trajectory ζ :
{1, . . . , `} → S is obtained by starting at a state s and applying
a sequence of controls [ui]

`−1
1 in succession, where ζ(1) = s

and ∀i ∈ {2, . . . , `}:

ζ(i)← SIMULATE(ζ(i− 1), ui−1, f, dt). (4)

The trajectory ζ is said to have reached region Rj ⊆ W at
time dt ∗ i if and only if ζ(i) positions the vehicle inside Ri.

Definition 1: (Multi-Goal Motion Planning with Dynamics
and Time Windows) Given
• a world (bounding box) W
• a set of obstacles O = {O1, . . . ,Om}, where Oi ⊆ W
• a set of goals G = {G1, . . . ,Gn}, where

– Gi = 〈Ri, [tstarti , tendi ]〉, Ri ⊆ W
– [tstarti , tendi ]: time interval associated with Gi

• a robot model 〈S,U , f, SIMULATE〉
• an initial state sinit ∈ S

compute controls [ui]
`−1
1 such that the dynamically-feasible

trajectory ζ : {1, . . . , `} → S obtained by starting at s and
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applying [ui]
`−1
i=1 in succession is collision-free and reaches

every goal Gi within the time interval [tstarti , tendi ].
Setting tendi = ∞ removes the upper bound. The special

case of imposing only an upper bound t on the overall task
duration can be obtained by setting each tendi = t.

III. ABSTRACT PROBLEM SOLVING

As mentioned, our approach uses an abstraction to facilitate
temporal reasoning. We first describe our problem in the
abstract setting and the solutions that we follow. The next
section describes our overall approach that integrates temporal
reasoning into sampling-based motion planning.

The problem abstraction used in this paper requires finding
a low-cost open tour over a weighted graph that starts at a
specified vertex and reaches each vertex within a specified
time bound [tstarti , tendi ]. This problem is referred to as TSP
with Time Windows (TSPTW) [19].

Definition 2 (TSPTW): Given
• a start vertex vstart,
• goal vertices Vgoals = {g1, . . . , gk} with corresponding

time intervals {〈g1, tstart1 , tend1 〉, . . . , 〈gk, tstartk , tendk 〉},
where 0 ≤ tstarti < tendi ≤ ∞,

• edges E ⊆ V × V , where V = {vstart, g1, . . . , gk}, and
• time durations T = {t(v′,v′′) : (v′, v′′) ∈ E}

compute a path σ over the graph G = (V,E, T ) and start times
〈t1, . . . , t|σ|〉 such that σ starts at vstart and visits each vertex
in Vgoals during the corresponding time interval. Among the
valid paths (temporal plans), preference should be given to the
ones that reduce the plan duration t|σ|.

The goal vertices in the abstraction correspond to rep-
resentative samples from the goal regions. As discussed in
Section IV, the temporal planner will be called many times
with different start vertices, times, and Vgoals to reflect the goal
regions that have yet to be reached from different branches of
the motion tree. Our approach can be used with any temporal
planner. We use a PDDL temporal planner and two refined
TSPTW solvers (based on depth-first branch-and-bound and
Monte-Carlo search).

1) Interface with Temporal PDDL Planner: The temporal
planner gets each query as a text file (or a string) consisting
of the start vertex, a set of pairs of connected waypoints
(edge wpX wpY), and the traveltime between each pair of
connected waypoints (traveltime). Timed initial literals are
used to specify time windows. The domain includes (move
wpX wpY) durative actions, whose duration is given by the
traveltime function1. A fragment of the query is given below:

(at v0) (edge v0 v1) (edge v0 v2) (edge v1 v2)
(= (traveltime v0 v1) 0.8)
(= (traveltime v0 v2) 1.5)
(= (traveltime v1 v2) 0.7)
(located task1 v1) (located task2 v2)
(at 1.1 (tw_open task1)) (at 2.1 (not (tw_open task1)))
(at 2.3 (tw_open task2)) (at 3.3 (not (tw_open task2)))

Note that in this new framework, the temporal-planning prob-
lem only contains waypoints corresponding to locations of
tasks, as opposed to the approach in [5] where the problem

1We use the same domain presented in [5].

includes one waypoint for each node of the PRM [20] used
to abstract the continuous space of the motions. This allows
increased scalability by an order of magnitude.

The output of the temporal PDDL planner is the list of
waypoints (tasks) to be visited in specific times, given how
long it takes to move between each pair of waypoints, e.g.,

v1 v3 v5 v4 v2
0.0 1.26 3.22 12.55 21.11

Note that it might be the case that the vehicle, when moving
from v5 to v4, takes less than 12.55 − 3.22 time units. The
temporal planner takes this into account and assumes the
vehicle will wait at v4 in order to satisfy the time windows
(wait actions do not need to be present in the plan).

2) Interface with Specialized TSPTW Solvers: The TSPTW
solver provides a function interface using arrays to denote
the start and end times and to output the computed tour. We
have implemented two specialized solvers based on branch-
and-bound and Monte-Carlo search.

a) Branch-and-Bound Search: The depth-first branch-
and-bound (DFBnB) procedure [21] uses an upper bound U to
prune the search. U can be obtained via a heuristic; the lower it
is, the better the pruning, but in case no upper bound is known,
it is safe to set U to ∞. The tour is maintained globally and
updated during backtracking. Another global variable keeps
track of the actual solution path. Temporal constraints are
checked when extending the solution and possible waiting
times on early arrivals are introduced. Sorting the successors
according to increasing cost accelerates the search for finding
an early solution.

b) Monte-Carlo Search: Monte-Carlo search has had
many successes in games, planning, and optimization [22]. It
uses results from rollouts to guide the search; a rollout is a path
that descends the search tree making a random move at each
level until reaching a leaf. As results can be strongly influenced
by the choice of appropriate policy to bias the rollouts, we
employ nested rollout with policy adaptations (NRPA) [23].
In this context, TSPTW is interpreted as a game to find legal
moves by extending a partial tour. NRPA effectively learns
valid and short tours [24] by optimizing over an objective
function that combines the number of constraint violations
with the total travel time. The nested search trades exploration
and exploitation and the number of rollouts. The runtime is
limited by O(id) rollouts, where d is the recursion depth and
i is the branching factor.

IV. OVERALL METHOD

Our approach has several components: (i) a discrete abstrac-
tion obtained via a roadmap that captures the connectivity
of the free space; (ii) expansion and partition of a motion
tree into equivalence classes based on the discrete abstraction
and time information; and (iii) use of temporal planning over
the discrete abstraction to guide sampling-based expansion of
the equivalence classes. A schematic illustration of the main
components and their interplay is shown in Fig. 3. Pseudocode
is shown in Alg. 1.
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Obstacles
O = {O1, . . . , Om}

Goal Regions
R = {R1, . . . ,Rn}

Time Windows
{〈tstart1 , tend1 〉, . . . , 〈tstartn , tendn 〉}
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RM = (VRM , ERM )
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Planner

Motion Tree
T Equivalence Classes

Expand
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Xkey

add new vertices/edges

Fig. 3. Components of our approach and their interplay.

Fig. 4. Examples of roadmaps in 2D and 3D scenes.

A. Discrete Abstraction via a Roadmap

The discrete abstraction provides a simplified problem
representation that ignores the dynamics. It is obtained by
constructing a roadmap RM = (VRM , ERM ) over the config-
uration space, where a configuration defines only the position
and orientation. The objective is to construct a dense roadmap
that connects the goals and provides many routes to reach
the goals. First, a configuration qGi is added to RM for
each goal Gi by sampling a point inside Gi and a random
orientation. Leveraging PRM [20], the roadmap is further
populated by generating nadd collision-free configurations
and then attempting to connect each configuration to its
nneighs nearest neighbors. The path between two neighboring
configurations q, qneigh is defined via interpolation. The edge
(q, qneigh) is added to the roadmap when the path from q
to qneigh is not in collision. This process of adding and
connecting configurations is repeated until all the goals belong
to the same connected component in RM . In the experiments,
we used nadd = 1500 and nneighs = dlog2 |VRM |e. Fig. 4
shows some examples of the roadmaps that were created.

To facilitate temporal reasoning, each edge stores the ex-
pected time it would take the robot to travel along the
associated path. Such time is estimated based on the path
distance and expected velocity of the robot.

B. Motion-Tree Partition based on Discrete Abstraction and
Temporal Plans

Starting at sinit, a motion tree T is expanded in the contin-
uous state space S by adding new vertices. Each vertex v ∈ T
has the fields {s, u,parent, t, goals, q}, which correspond to
a state, control, parent, time duration, remaining goals, and
nearest roadmap configuration, respectively. By construction,
v.s is a collision-free state. T is expanded from v by applying
a control u to v.s and simulating the robot motion for one
time step dt. If not in collision, the new vertex vnew, where
vnew.s ← SIMULATE(v.s, u, f, dt), is added to T with v as
its parent (Alg. 1b).

Algorithm 1 Proposed approach to integrate temporal reason-
ing into sampling-based motion planning.

Input: world W; obstacles O; goals G = {G1, . . . ,Gn}, Gi =
〈Ri, [t

start
i , tendi ]〉; robot model 〈S,U , f〉; initial state sinit; time step

dt; runtime limit tmax

Output: collision-free and dynamically-feasible trajectory that reaches
each goal within its time window; or null if no solution is found

1: RM ← CONSTRUCTROADMAP(O,G) //§IV-A
2: Ξ← SHORTESTPATHS(RM,G)
3: T ← INITIALIZEMOTIONTREE(sinit)
4: X ← ∅; UPDATEEQUIVALENCECLASSES(X , ROOTVERTEX(T ))
5: while TIME() < tmax do
6: Xkey ← SELECTEQUIVALENCECLASS(X ) //§IV-C1

♦ Expand Xkey along temporal plan Xkey.σ §IV-C2
7: p← SELECTTARGET(Xkey.σ)
8: v ← SELECTVERTEX(Xkey.vertices, p)
9: for several steps do

10: 〈vnew,wait〉 ← STEPTOWARDTARGET(T ,X , v, p,false)
11: if vnew = null then break
12: if vnew.goals = ∅ then return ζT (vnew)
13: if ¬UPDATEEQUIVALENCECLASSES(X , vnew) then
14: {REMOVEVERTEX(T , vnew); break}
15: if ¬wait and NEARTARGET(snew, p) then break
16: v ← vnew
17: return null

(a) UPDATEEQUIVALENCECLASSES(X , vnew) //§IV-B
1: Xnew ← FINDEQUIVALENCECLASS(X , 〈vnew.q, vnew.goals, vnew.t〉)
2: if Xnew = null then
3: Xnew ← NEWEQUIVALENCECLASS(〈vnew.q, vnew.goals, vnew.t〉)
4: A ← TEMPORALPLANNERGRAPH(RM,Ξ, 〈vnew.q, vnew.goals〉)
5: Xnew.σ ← TEMPORALPLANNER(A, 〈vnew.q, vnew.goals, vnew.t〉)
6: if Xnew.σ = null then return false
7: X ← X ∪ {Xnew}
8: Xnew.vertices← Xnew.vertices ∪ {vnew}
9: return true

(b) STEPTOWARDTARGET(T ,X , v, p,wait) //§IV-C2
1: u← CONTROLLER(v.s, p,wait)
2: snew ← SIMULATE(v.s, u, f, dt)
3: if COLLISION(snew) then return null
4: vnew.[parent, s, t, goals, q]←

ADDNEWVERTEX(T , v, snew, v.t+dt, v.goals,MAP(RM, snew))
5: if (Gi ← REACHEDGOAL(G, vnew)) 6= null then
6: wait← vnew.t < tstarti
7: if vnew.t ∈ [tstarti , tendi ] then vnew.goals← v.goals− {Gi}
8: return 〈vnew,wait〉

Let ζT (v) denote the trajectory obtained as the sequence of
states connecting the root of T to v. To facilitate temporal
reasoning, v keeps track of v.t and v.goals, which denote
the time duration of ζT (v) and the set of goals that have
yet to be reached by ζT (v). The vertex v reaches goal
Gi = 〈Ri, [tstarti , tendi ]〉 if v.s places the robot inside the
region Ri and v.t ∈ [tstarti , tendi ]. When v reaches Gi, Gi is
removed from v.goals. Thus, ζT (v) is a solution to the multi-
goal planning problem with time windows if v.goals = ∅.

We leverage the discrete abstraction and temporal plan-
ning to effectively guide the expansion and partition T into
equivalence classes. The premise is that vertices that provide
the same discrete information should belong to the same
equivalence class. The partition seeks to determine how to
expand T from v. It requires searching the discrete abstraction
to find a temporal plan with v as the start vertex, v.t as the
start time, and v.goals as the set of unreached goals (with their
time windows). For this reason, v is mapped to the closest
configuration in the roadmap RM , denoted by v.q. We can
now use the solvers described in Section III to find a temporal
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plan over RM , denoted by v.σ.
Consider a new vertex vnew ∈ T . We could possibly use the

above procedure to find a temporal plan for vnew. However,
T typically has tens of thousands of vertices and invoking
a temporal planner from each vertex would be infeasible. To
address this, we introduce the notion of equivalence classes.
The vertex vnew belongs to the same equivalence class as v
when they map to the same roadmap configuration, have the
same remaining goals, and the temporal plan associated with
v is compatible with the start time vnew.t. In other words, v.σ
does not violate any time constraints when the start time is
changed from v.t to vnew.t. We can now define the equivalence
class Xv as

Xv = {vnew : vnew ∈ T ∧ v.q = vnew.q ∧ (5)
v.goals = vnew.goals ∧ (6)

COMPATIBLETEMPORALPLAN(G, v.σ, vnew.t) = true} (7)

The first equivalence class is Xvinit
. When vnew is added to

T , a check is done to determine if vnew can be added to
an existing equivalence class. If not, a new equivalence class
Xvnew is created. Pseudocode is shown in Alg. 1a.

When creating Xvnew
, the temporal planner is invoked to

compute Xvnew .σ using vnew.q as the start vertex, vnew.t as
the start time, and 〈q1, . . . , qk〉 = 〈qGi : Gi ∈ vnew.goals〉 as
the goal vertices. The time duration for any pair (q′, q′′) where
q′, q′′ ∈ {vnew.q, q1, . . . , qk} is set to the time duration of the
shortest path in RM from q′ to q′′. This is a much smaller
graph than RM , and will get even smaller as T reaches
new goals. To generate the query efficiently, the framework
precomputes shortest-path distances using Dijkstra’s shortest-
path algorithm. This takes only a negligible fraction of the
runtime in the problem settings considered here (several thou-
sand nodes and edges and up to 20 goals).

C. Integrated Search

After constructing the roadmap RM , initializing the motion
tree T , and creating the first equivalence class Xvinit , the over-
all approach selects an equivalence class X .v and expanding T
from X .v along the temporal plan X .σ. As T is expanded, new
equivalence classes are created. These procedures are called
repeatedly until a solution is found or the runtime limit is
reached (Alg. 1:5–17).

1) Selecting an Equivalence Class based on Time Duration
of the Temporal Plan: To promote effectiveness, priority is
given to equivalence classes associated with short temporal
plans. We take into account both the time duration when the
temporal plan is supposed to be completed as well as the
number of goals in the temporal plan when defining a weight
for each equivalence class:

WEIGHT(X .v) = αNRSELECTIONS(X .v)

DURATION(X .σ) ∗ 2|X .σ|
. (8)

The equivalence class with maximum weight is then selected
for expansion. Note the aggressiveness of the number of
goals in X .σ as we would like to quickly generate plans
that reach all the goals. We also introduce a penalty factor,
αNRSELECTIONS(X .v) (0 < α < 1), based on the number of times

X .v has been previously selected for expansion. Without it,
the approach could become stuck trying to indefinitely expand
from the same equivalence class, even though constraints
imposed by dynamics and obstacles may make it impossible
or difficult to do so. These multi-objective criteria promote
rapid expansions along short temporal plans while allowing
the approach to explore alternative plans.

2) Expanding the Equivalence Class along the Temporal
Plan: After selecting an equivalence class X .v, the objective
becomes to expand T so that it reaches the goals in the
temporal plan X .σ in succession and within the specified
time bounds (Alg. 1b). Let G1 be the first goal in X .σ.
To reach it, the approach attempts to expand T along the
shortest path in the roadmap from v.q to qGi . Using the
shortest path allows the approach to reduce the time traveled,
thus improving the likelihood of reaching Gi in time. A
proportional-derivative-integrative (PID) controller is used to
expand T toward the roadmap configurations in succession.
For a vehicle, the PID controller would turn the wheels toward
the target and then move straight to it. The PID controller
is run for several steps. Each intermediate state is added to
T . When the branch expansion reaches a goal Gi earlier,
it waits there. The branch expansion stops when a collision
is encountered. It also stops if the new vertex vnew is not
compatible with an existing equivalence class and the temporal
planner is unable to compute a temporal plan for X .vnew.
When the motion-tree expansion stops, the procedure updates
the equivalence classes and their weights, and goes back to
the core loop. In the next iteration, it could possibly select
a different equivalence class since the weights might have
changed. When the approach has difficulty expanding T along
the shortest path from v.q to qGi , then attempts are made to
expand T in some random direction. In this way, the approach
explores the sorrounding areas, which could also lead to the
creation of new equivalence classes. This interplay between
temporal planning and sampling-based motion planning is the
salient feature of our approach that allows it to effectively
solve challenging problems, as the experiments demonstrate.

V. EXPERIMENTS AND RESULTS

Experiments use complex scenes (Figs. 1 and 5) and robot
models (snake, car, blimp) with nonlinear dynamics (Sec-
tion II). Scalability and efficiency are evaluated by increasing
the number of goals and tightening the time bounds.

1) Temporal Planners: We use Random, Optimal, Branch-
and-bound, and Monte-Carlo as specialized TSPTW solvers
and Optic [2] as the more generic temporal planner. Random
iterates over all permutations until it finds a compatible
temporal plan. Optimal does not stop early but updates the
temporal plan when a better one is found. Since Random and
Optimal iterate over n! permutations, they are mainly used for
small problem instances with up to n = 8 goals.

2) Benchmark Instances: We generate 30 instances for each
combination of scene and number of goals. Each instance is
generated by randomly placing the goals, ensuring that they do
not collide with the obstacles. To make the problems harder,
goals are not cluttered so that the vehicle has to travel for
longer distances.
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scene 2 scene 3 scene 4

Fig. 5. Scenes used in the experiments (see also Fig. 1).

Each goal is associated with a time bound. Generating the
time bounds at random leads to many unsolvable instances. For
this reason, we generated the time bounds by first generating
a random location and a tour at random. We then computed
the time ti each goal Gi in the tour would be reached when
traveling along the shortest paths in the roadmap graph, using
the expected velocity to convert distances to times. A time
window is then defined as [(1 − ε)ti, (1 + ε)ti] for some
parameter ε. In the experiments, the default value is ε = 0.2.
In Section V-5, its value is varied from inf to 1.0, 0.4, 0.2,
0.1, and 0.05.

For each combination of parameters, the planner is run over
all instances. Results report mean runtime and plan duration
after dropping runs that are below the first quartile or above
the third quartile to avoid the influence of outliers. Runtime
measures everything from reading the input until reporting a
solution or reaching the runtime limit (set to 20s).

3) Runtime Results when Increasing the Number of Goals:
Fig. 6 summarizes the results when varying the number of
goals from 4 to 20. Results show the efficiency of the approach
as it is able to solve these challenging problems within a
few seconds. When coupled with Random and Optimal, the
approach can only solve small problem instances with up
to 8 goals. Using the specialized TSPTW planners makes it
possible to solve larger problem instances with up to 20 goals.
Because of the time bounds, the motion tree is partitioned
not just in space and with respect to goals that have been
reached but also with respect to time and temporal plans. As
a result, more equivalence classes are created. Even though this
increases the number of calls to the discrete planner, it allows
the approach to selectively explore the state space along routes
defined by temporal plans. As a result, in a few seconds we
are able to solve challenging problems with up to 20 goals and
tight time bounds, demonstrating the importance of integrating
temporal reasoning into sampling-based motion planning.

4) Baseline Comparisons: As discussed in Section I, there
are no other methods specifically designed to solve multi-
goal motion planning with dynamics and time windows. For
baseline comparisons, we used DROMOS [8], which was
designed for multi-goal motion planning with dynamics but
does not take time windows into account. To make it work
here, we modified DROMOS to mark a goal Gi as reached only
when a motion-tree branch reaches Gi within the time window
associated with Gi. To show the importance of coupling
temporal planning with motion planning, we also created a
decoupled version of our approach, which computes only one

temporal plan σ in the beginning and never changes it. The
decoupled planner then seeks to expand the motion tree from
one goal to the next as defined by σ. We also used an RRT
to reach the goals in succession as defined by σ.

Fig. 7 shows the results when comparing our approach to
the modified DROMOS and sequential planners. As expected,
these other planners have difficulty solving challenging prob-
lems, timing out in cases with 8 or more goals. As DROMOS
does not use temporal information, it becomes increasingly
difficult to reach each goal within its time window. For the
decoupled planner and RRT, the issue is that it does not change
the temporal plan. As a result, the motion-tree expansion
becomes stuck when constraints imposed by the dynamics
and obstacles make it difficult to follow the temporal plan. In
contrast, the interplay between motion planning and temporal
planning in our approach makes it possible to expand the
motion tree along alternative temporal plans. In this way, our
approach continually makes progress toward reaching each
goal within its time window.

5) Runtime Results when Adjusting the Time Windows: The
approach is also evaluated when adjusting the time windows
by varying ε from inf to 1.0, 0.4, 0.2, 0.1, and 0.05, so the time
window would be [(1− ε)ti, (1+ ε)ti]. Results in Fig. 8 show
that the approach is most effective when there are no bounds
ε = inf or when the bounds are loose. As ε is made smaller, it
becomes increasingly challenging to find solution trajectories
that satisfy the time constraints. Nevertheless, our approach is
able to effectively find solutions even as the bounds are made
tighter. This again is due to the use of temporal planning to
effectively guide sampling-based motion planning.

6) Runtime Distribution: Fig. 9 shows the runtime distri-
bution for various components of our approach. For smaller
problem instances, the roadmap construction takes more time
since the motion-tree expansion quickly finds solutions. As the
number of goals increases, it becomes harder to find solutions
so more time is spent in the motion tree expansion and the
interplay with the temporal planner. As noted earlier, the
number of equivalence classes could reach into the hundreds
requiring that many calls to the temporal planner. One caveat
is that the the number of goals on which the temporal planner
is run becomes smaller and smaller as the tree expands and
reaches the goals. Nevertheless, there is substantial work done
by the temporal planner. The runtime distribution does not
imply that temporal planning is the bottleneck. In fact, our
approach is shifting the load from the motion-tree expansion,
which is slow, to the temporal planner which can find increas-
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Fig. 6. Runtime results when varying the discrete planner in our approach as a function of the number of goals: (a) MC (b) BNB (c) Optic (d) Random (e)
Optimal. Runtime includes everything from preprocessing to reporting that a solution is found. The thin bar on the left side indicates the preprocessing time
(constructing the roadmap and running Dijkstras single-source shortest path algorithm from each of the goals).

ingly effective plans over the discrete abstraction to guide the
motion-tree expansion.

7) Results on the Time Duration of Solution Trajectories:
Fig. 10 shows that our approach generally finds good solution
trajectories since it is guided by temporal plans that seek to
reduce the time duration to reach all the goals.

VI. DISCUSSION

Multi-goal motion planning with dynamics and time win-
dows is relevant in many logistics applications. This work
developed an approach that integrated temporal reasoning into
sampling-based motion planning. Scalability and efficiency
were shown by increasing the number of goals and tightening
the time windows. The approach is also agnostic to the inner

workings of the temporal planner so that it can be used
in conjunction with any temporal planner. One direction for
future research is to consider oversubscription planning when,
due to temporal constraints, it is not possible to reach all
the goals. The objective then is to maximize the number of
reached goals. As we looked at time windows attached to
goals, future research towards tighter integration of task and
motion planning will exploit the much larger expressiveness
of PDDL temporal planners in more complex scenarios.
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