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Abstract— The design of mobile autonomous robots is

challenging due to the limited on-board resources such as

processing power and energy. A promising approach is to

generate intelligent schedules that reduce the resource con-

sumption while maintaining best performance, or more in-

terestingly, to trade off reduced resource consumption for a

slightly lower but still acceptable level of performance. In this

paper, we provide a framework to aid designers in exploring

such resource-performance trade-offs and finding schedules

for mobile robots, guided by questions such as “what is the

minimum resource budget required to achieve a given level

of performance?” The framework is based on a quantitative

multi-objective verification technique which, for a collection

of possibly conflicting objectives, produces the Pareto front

that contains all the optimal trade-offs that are achievable.

The designer then selects a specific Pareto point based on

the resource constraints and desired performance level, and

a correct-by-construction schedule that meets those constraints

is automatically generated. We demonstrate the efficacy of this

framework on several robotic scenarios in both simulations and

experiments with encouraging results.

I. INTRODUCTION

Mobile robotics is a fast growing field with a broad range
of applications such as home appliance, aerial vehicles, and
space exploration. The main feature that makes these robots
very attractive from the application perspective is their ability
to operate remotely with some level of autonomy. The very
same factors, however, introduce a challenge from the design
angle due to the limited on-board resources such as process-
ing power and energy source. For example, the Curiosity
Mars rover operates on a CPU with less computational power
than a today’s typical smartphone CPU [1], resulting in slow
movements and limited capabilities of the rover. In drones,
the weight and the capacity of the on-board battery directly
influences the robot’s ability to stay airborne.

Mobile autonomy is enabled through localization, per-
ception and planning modules, where localization and per-
ception provide information about the robot’s location and
surroundings, respectively, and the planning module gener-
ates a trajectory. Most mobile robots treat these modules as
separate processes, which are run simultaneously, and often
continuously, for best performance. These algorithms are
complex and consume computational resources in addition to
the energy cost of the robot’s motion (motors). An example
of CPU usage by the modules for a mobile ground robot
is shown in Fig. 1. By intelligently scheduling the modules
[2], it may be possible to reduce the resource consumption
while maintaining best performance. More interestingly, it
may be possible to trade off reduced resource consumption
for a slightly lower but still acceptable level of performance.
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Fig. 1: A robot with a stereo camera with an on-board processor running
various modules required for mobile autonomy. The color-coded pie chart
is an example representation of per-module CPU usage. By intelligently
scheduling each module, we are likely to free resources, not only to reduce
the resource budget, but also to free resources for other modules.

Examples include switching localization on and off to save
energy or restricting the continuous calls of the planner
to free resources for other modules. One issue with this
approach is that the objectives, i.e., to reduce resource usage
and to improve performance, are naturally competing, and
by optimizing for one objective, the values for the other may
become suboptimal. For instance, by turning localization off
throughout the trajectory, the robot may minimize its energy
consumption, while at the same time increase the probability
of collision. On the other hand, keeping localization on for
the duration can lead to excessive energy usage.

The aim of this paper is to provide a framework to
aid the designers in exploring such resource-performance
trade-offs and finding schedules for mobile robots, guided
by questions such as “given a resource budget, what guar-
antees can be provided on achievable performance?” and,
more interestingly, “what is the minimum resource budget
required to achieve a given level of performance?”. To this
end, we exploit a technique from formal methods known
as quantitative multi-objective verification and controller
synthesis [3], [4], which, for a given scenario and a set
of quantitative objectives, e.g., constraints on computation
power, time, energy, or probability of collisions, produces
the so-called Pareto front, a set of Pareto optimal points that
represents all the optimal trade-offs that are achievable. The
designer then selects a specific Pareto point based on the
resource constraints and desired performance level, and a
correct-by-construction schedule that meets those constraints
is automatically generated. We illustrate the potential of
the framework on a generic resource cost function in con-
junction with two performance criteria of safety and target-
reachability in the context of a localization schedule but
emphasize that the technique is generally applicable.
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Multi-objective techniques have been studied for proba-
bilistic models endowed with costs such as energy or time.
Off-the-shelf tools exist to support Pareto front computation
[5], [6], but are limited to discrete models such as Markov
decision processes (MDP). The challenge here, therefore,
is to adapt the techniques to the continuous-domain, both
time and space, scenario typical for mobile robots, while
also capturing the uncertainty that the autonomy modules
must deal with. We thus propose a novel abstraction method,
which considers noise in both the robot dynamics and its
sensors. Given a set of control laws, the method obtains a
discretization of the continuous robot motion as an MDP. We
lift the robot’s resource consumption to a cost on this MDP,
and through the multi-objective techniques, we compute the
Pareto front that encodes all optimal trade-offs between the
resource requirements and the task-related performance guar-
antees. Having this set available to the designer, they have
the freedom to choose a Pareto point based on their design
criteria. For the selected point, we generate a schedule. We
demonstrate the efficacy of this framework on several robotic
scenarios with various dynamics and resources. Summariz-
ing, the main contributions of this work are:
● a general framework for the exploration of resource-

performance trade-offs in mobile robotics based on
multi-objective optimization with various (possibly con-
flicting) objectives,

● a discretization of the robot dynamics that enables
reduction to the multi-objective problem, and

● validation of the techniques by both simulation and
experiments of complex robotic scenarios with encour-
aging results.

II. LITERATURE REVIEW

Most existing resource allocation works in robotics focus
on single objective problems, namely optimization for QoS
or energy. Examples include [7] in wireless systems, [8]
in multi-robot localization, and [2] in perception. Such
problems usually involve scheduling sensor usage, and the
typical performance criterion is the “goodness” of the state
estimation, e.g., [9], [10]. Apart from [11], where computa-
tion is offloaded to the cloud to improve performance, trade-
off analysis between resource and performance objectives has
been little studied. Our framework not only performs such
analysis, but it also allows multiple objectives for various
resources, e.g., energy, time, and computation power, and
performance criteria, e.g., safety and target reachability.

Since mobile robots are increasingly often employed in
safety- and performance-critical situations, techniques from
formal methods that offer high-level temporal logic planning
[12], correct-by-construction controller synthesis [13] and
performance guarantees [14], [15] have been gaining atten-
tion. However, these are task specific and lack the generality
and flexibility of the proposed framework, which enables
systematic exploration of trade-offs.

Trade-off analysis techniques have been studied in ver-
ification, mostly from the theoretical perspective, and in-
clude quantiles and multi-objective methods. Quantiles can

express the cost-utility ratio but not the Pareto front, and
have been applied for energy analysis of low-level protocols
[16]. Multi-objective (or multi-criteria) optimization has been
extensively studied in operations research and stochastic con-
trol [17]. More recently, techniques that combine high-level
temporal logic specifications with multi-objective optimiza-
tion have been formulated for discrete probabilistic models,
including probabilistic [3] and expected total reward [4], [18]
properties used in this paper. They have been employed, e.g.,
to analyze human-in-the-loop problems [19]. The works [20],
[21] consider problems with budget constraints for discrete
models from the theoretical point of view.

III. PROBLEM FORMULATION

The focus of this work is an optimal trade-off analysis
between a robot’s resource usage and its task guarantees
through the use of a localization module. We consider robot
dynamics (plant model) given by:

˙

x = f(x,u,w), (1)

where x ∈X ⊆ Rnx is the state of the robotic system, u ∈ U ⊆
Rnu is the control input, w ∈ Rnw is the process (motion or
input) noise given by a normal distribution N (0,Qw) with
zero mean and covariance Qw ∈ Rnw×nw , and f ∶ X × U ×
Rnw → Rnx is a continuous integrable function that describes
the evolution of the robot in the space. The robot is equipped
with two sets of sensors that enable the measurement of its
state, e.g., odometry and high-accuracy localization sensors.
The first set (odometry) uses a negligible amount of resources
but provides inaccurate noisy measurements. By deploying
the second set, which we refer to as the localization module
or simply localization, additional information is obtained,
and the measurements become more accurate at a higher
cost of resources.

Let A = {a
start

, a

boot

, a

on

, a

o↵

} denote the set of all possi-
ble localization module actions (status). Action a

start

sends a
signal to start the localization, and it takes time T

boot

∈ R≥0
for it to turn on. The action a

boot

refers to the booting status
during T

boot

. Action a

on

indicates that localization is on, and
a

o↵

turns it off. The resulting measurement model is:

z = �������h
od(x,vod) if a ∈ {a

start

, a

boot

, a

o↵

},
h

lo(x,vlo) if a = a
on

,

(2)

where z ∈ Z ⊆ Rnz is the state measurement, and v

od

, v

lo ∈
Rnv are the measurement noise terms under the first and
second set of sensors (odometry and localization), respec-
tively. In high accuracy mode, the noise is given by v

lo ∼N (0,Qv), where covariance Qv ∈ Rnv×nv , whereas in low
accuracy mode, no restriction is imposed on the distribution
of vod.

The robot moves in an environment (workspace) W ⊂
RnW , where nW ∈ {2,3}, with a set of obstacles WO and
a target region WG. Colliding with an obstacle constitutes
failure; hence, the robot’s task is to avoid obstacles and reach
the target by following a precomputed reference trajectory
'. We assume that ' is given as a sequence of waypoints
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' = (˜x1, . . . , ˜x�'�), where ˜

xi ∈X . We denote the initial state
of the robot by ˜

x0. The robot is equipped with an on-board
controller that generates a sequence of control laws in order
to follow ' (see Sec. IV-A).

We assume that, when the localization module is used,
i.e., a = a

on

, the i-th control law drives the robot to a
proximity of waypoint ˜

xi (see Sec. IV-A). When the robot
turns its localization off, it may deviate from ' due to
imprecise measurements. Therefore, even if ' is an obstacle-
free trajectory, by turning off the localization module, there
is a probability that the robot may collide with an obstacle
or may not reach the target. We specify these probabilities
formally in Sec. IV-C.

The aim is, given ', to schedule the use of localization
over time in a way that optimizes the trade-off between the
robot’s resource usage and its task guarantees. Let & denote
a localization schedule, which simply speaking, indicates
which localization action the robot needs to apply at any
given time (see Sec. IV-B). The resource consumption of the
robot under schedule & is the sum of the resources required
for it to run the localization module and the resources
consumed by the rest of the system. To allow the inclusion of
different types of resources, e.g., computational power, time,
or energy, we define a general cost function c ∶X ×U ×A→
R≥0 (see Sec. IV-C.1 for details and Sec. VI for examples) to
represent total resource usage. The formal problem definition
is then as follows.

Problem 1: Given a mobile robot model as in (1) and (2)
in an environment W with a set of obstacles WO and a target
WG, a reference trajectory ' with its corresponding control
laws, and resource cost function c, compute a localization
schedule & such that

● the expected total resource cost is minimized,
● the probability of collision is minimized, and
● the probability of reaching the target is maximized.

These objectives may be competing, and there may not
exist a localization schedule that globally optimizes all of
them. In this work, we are interested in the set of all
optimal trade-offs between the objectives, which introduces
an additional level of complexity to the problem. Another
major challenge is dealing with a continuous robotic system
with noisy measurements, i.e., partial observability. This
leads to reasoning in belief space, which is generally a
computationally infeasible domain. We propose a framework
to address these challenges in two steps. First, we overcome
the complexity of belief space through a suitable finite
abstraction and then use formal techniques to generate the
set of all optimal trade-offs between the objectives.

This framework is general in that its structure is indepen-
dent of the choices of objectives. It can also handle multiple
resource cost functions. Here, we present the concrete design
of the two steps of the framework for the particular choices
in Problem 1 but note that, in addition to more objectives,
it can also be adapted to schedule other modules such as
perception or different motors.

IV. SYSTEM DESCRIPTION

Due to both process and measurement noise, robot’s
motion is stochastic, and its exact state cannot be known.
They, however, can be described as probability distributions.
The probability distribution of xt at time t ∈ R≥0 is referred
to as the belief of xt, denoted by bt, and given by

xt ∼ bt = Px

(xt � xt0 , ut0∶t, zt0∶t, at0∶t), (3)

where P
x

denotes the (conditional) probability density func-
tion of x, xt0 is the distribution at the initial time t0, and
ut0∶t, zt0∶t, and at0∶t are the sequences of control inputs,
measurements, and statuses of the localization used from t0

to t. We denote the belief space containing all possible beliefs
by B, i.e., bt ∈ B ∀t.
A. Control Laws

Recall that, starting from the initial position ˜

x0, the robot
follows reference trajectory ' = (˜x1, . . . , ˜x�'�) using a series
of control laws. For 1 ≤ i ≤ �'�, control law ˜

ui = (gi, ⇠i)
consists of a feedback controller gi ∶ B → U designed to
drive the robot towards ˜

xi and a termination rule (trigger)
⇠i that indicates when to terminate the execution of gi. We
assume that, when localization is on, gi is able to stabilize the
state belief b around waypoint ˜xi. The construction of such a
controller for robotic systems is detailed in [22]. In short, gi
is generally a concatenation of two controllers: reachability
and stabilizer. The reachability controller drives the system
to a neighborhood of ˜

xi, and then the stabilizer controller
stabilizes b to a predefined belief ˜

bi that corresponds to
˜

xi. This stabilization is typically achieved by an LQG
controller on the linearized dynamics around ˜

xi and defining
˜

bi = N (˜xi,Qx̃i), where Q

x̃i is the steady-state covariance
given by steady-state Kalman filter (solution to an algebraic
Riccati equation [23]). Note that the convergence to ˜

bi is
guaranteed if the linearized dynamics are controllable and
observable [23]. For a full discussion on the construction of
such controllers for various systems, including nonholonomic
systems, see [22]. When localization is off, gi uses only the
reachability part of the controller.

Let �ti be the duration that it takes the reachability
controller to move the robot from ˜

xi−1 to (a neighborhood
of) ˜

xi under localization on. We design the trigger ⇠i to fire,
i.e., ⇠i = 1, when the belief of the robot state converges to
˜

bi if the localization is on (in practice, an ✏-convergence is
sufficient, i.e., �bt − ˜bi� < ✏). In turn, if the localization is not
on, the robot applies gi for the duration of �ti. Formally,

⇠i = ������� <✏(�bt − ˜bi�) if a = a
on

,

�(t − (ti−1 +�ti)) if a ∈ {a
start

, a

boot

, a

o↵

}, (4)

where and � are the Indicator and Dirac delta functions,
respectively, and ti−1 is the time mark of the initialization
of ˜

ui. Furthermore, ✏ = (✏
mean

, ✏

var

)T ∈ R2>0, and for bt =N (ˆxt,Qx̃i), where ˆ

xt and Q

x̃i are the state estimate and
covariance at time t, the indicator function <✏(�bt− ˜bi�) = 1
if �ˆxt − ˜

xi� < ✏

mean

and �Qxt − Q

x̃i � < ✏

var

; otherwise 0.
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Therefore, from trajectory ', the following series of control
laws, which enable the robot to follow ', is obtained:

' = (˜x1, . . . , ˜x�'�) ⇒ u = (˜u1, . . . , ˜u�'�). (5)

B. Localization Schedule

The robot makes a decision on the use of its localization
based on its belief bt. This decision is referred to as the
localization schedule. Let D(⋅) denote the set of all prob-
ability distributions over a given set. Localization schedule
is a function & ∶ B → D(A) that assigns to a belief bt a
probability distribution over the localization actions from the
set A.

In this work, we assume that the localization decisions
are made right before applying each control law ˜

ui. In
other words, the granularity of the localization decisions
corresponds to the waypoints in ', which is user-defined.
Therefore, given a reference trajectory ' and a localization
schedule & , the induced robot trajectory can be described by
a sequence of state beliefs:

bt0
(at0 ∶t1 ,ũ1)������→ bt1

(at1 ∶t2 ,ũ2)������→ . . .

(at�'�−1 ∶t�'� ,ũ�'�)���������→ bt�'� , (6)

where the localization action of ati is assigned according
to the probability distribution &(bti) over A. Note that it
is possible for the localization to become active during the
execution of ˜

ui if ati−1 = a

boot

. That means that, at some
point between ti−1 and ti, booting is complete. At this point,
the measurements become more accurate, and ˜

ui drives the
robot’s state belief to ˜

bi.
We assume that, without loss of generality, the localization

is initially on. Therefore, in Problem 1, we are interested in
computing a feasible schedule, in which it holds that: the first
action applied by the schedule is a

on

or a

o↵

; every action
a

start

is immediately preceded by a

o↵

; every action a

boot

is
immediately preceded by a

start

or a

boot

; if a

start

is used at
time point ti, i ≥ 1, then action a

boot

is used at all time
points ti+1, . . . , tj such that tj − ti < T

boot

≤ tj+1 − ti; and
every action a

on

is immediately preceded by a

boot

or a
on

.
Since we are interested in efficient schedules, we assume

that all schedules avoid turning off the localization module
while booting is in progress and starting the booting process
if it cannot be completed by the time t�'�.

C. Objectives

1) Resource Consumption: One of the objectives that
influences the choice of & is the resource consumption. Let
c ∶ X × U × A → R≥0 denote a resource consumption
function, which represents the amount of resources used
by the robotic system given its state, control input, and
localization action. An example of such resource cost is
the amount of computations required by different system
modules (including localization). We are interested in the
total expected resource cost under & , which we denote by
E

cost

(&).

Let bt denote the expected belief, where expectation is
taken over observations, i.e.,

bt = EZ(bt � xt0 , at0∶t) (7)= �
Zt0 ∶t
P
x

(xt � xt0 , at0∶t,zt0∶t)pr(zt0∶t)dzt0∶t (8)

= P
x

(xt � xt0 , at0∶t), (9)

where EZ is the expectation over domain Z, and pr is the
probability measure. Then, given the localization action at

and control ut, the expected cost at time t is given by

EX(c(xt,ut, at)) = �
X
c(xt,ut, at)bt dxt, (10)

where EX is the expectation over domain X . The total
expected cost for the whole trajectory under & is

E

cost

(&) = � t�'�
t0

�
at∈A

&(bt)(at)EX(c(xt,ut, at))dt. (11)

2) Task Performance: The task objectives of obstacle
avoidance and target reachability need to be reasoned about
probabilistically by using beliefs. Given that all collisions
with obstacles are terminal, the fragments of the beliefs that
are in collision remain in obstacles as bt evolves. Hence, the
probability of collision along ' under schedule & is

P

coll

(&) = pr�xt0∶t�'� ∈XO� = �
XO

bt�'� dxt�'� , (12)

where XO ⊂ X is the set of states that correspond to the
obstacles in WO. Similarly, the probability that the robot is
in the target region at the end of the trajectory execution is

P

targ

(&) = pr(xt�'� ∈XG) = �
XG

bt�'� dxt�'� , (13)

where XG ⊂ X is the set of states that correspond to the
target region WG.

V. SOLUTION METHOD

Here, we detail our abstraction method for the robotic
system in Problem 1 and the reduction of the problem to
a multi-objective optimization over an MDP.

A. Abstraction
1) Belief Space Discretization: Recall that, due to motion

and observation noise, the robot has to base its localization
schedule on state beliefs. These beliefs are generally hard to
reason about because they are continuous in both time and
space. One of the novelties of this work is a discretization
method that reduces the complexity of this reasoning from
continuous to a discrete, finite space. The purpose is to
capture all possible behaviors of the system in expectation;
thus, we focus on the expected beliefs. The key observation
is that localization decisions are only made right before
applying each control law, and there is only a finite number
of control laws (waypoints) and localization actions. Hence,
the number of belief states that the robot has to make a
decision on is, in turn, finite.

Technically, the robot’s belief evolves sequentially based
on the applied control law and localization action in each step
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Fig. 2: Structure of the belief graph and the MDP. The thickness
of edges indicates their action label. In (b), action a

sbo

represents
the sequence of actions needed to fully activate localization, which
begins with a

start

, continues with a
boot

, and ends with a
on

.

as shown in (6). Initially, the belief is bt0 = �(xt0 − ˜x0). For
1 ≤ i ≤ �'� and action ati−1 given according to &(bti−1) for
the time window [ti−1, ti), the (expected) belief at time ti

is:

bti = �������Px

(xti � bti−1 , ˜ui, aon) if at−i = aon,P
x

(xti � bti−1 , ˜ui, ao↵) if at−i ≠ aon, (14)

where at−i is the final status of the localization in [ti−1, ti).
Therefore, a discrete belief graph, which is a directed graph
that captures all possible beliefs of the robot at the local-
ization decision points, can be constructed as in Fig. 2a.
The nodes of the graph are the beliefs bti , at which the
localization schedule is called, and each edge is labeled with
a localization action and directs to the next belief.

It is important to note that, in addition to preserving the
history of collisions, bti is dependent on the history of the
applied actions. In other words, bti is unique to the sequence
of applied localization actions up to ti. For simplicity of
presentation, we do not project this history in the notation
of beliefs, but it is reflected in the graph in Fig. 2a by
only one incoming edge for each belief node. This results
in a state explosion in the belief graph. That is, the total
number of nodes is exponential in the length of ', i.e.,O(�A��'�). We drastically reduce this size (to quadratic in �'�)
by distinguishing between the collision-free and in-collision
parts of the belief nodes as explained below.

2) MDP Construction: Recall that the robot converges to
˜

bi when at−i−1 = aon. This is trivially conditioned on the fact

that the robot’s trajectory is collision-free. Let ¯

bti denote
the collision-free part of bti , i.e., the truncated probability
distribution of xti over X −XO:

¯

bt = Px

(xt � xt0 , ut0∶t, at0∶t, xt ∉XO). (15)

Then, ¯

bti = ˜

bi (up to precision ✏) when at−i = a

on

. This
means that, every time the localization is turned on, the
truncated collision-free belief ¯bti of the robot becomes a pre-
computed distribution, resulting in an independence from the
history of the applied localization actions unlike bti . This
leads to a lower number of unique ¯

bti beliefs (i.e., lower
number of unique nodes in the graph). Let ¯

b

j
i , 0 ≤ j ≤ i,

denote the collision-free belief at time ti with the most recent
localization action a

on

at time tj , i.e., at−j = aon and at ≠ aon
for all tj < t < ti. The sequential evolution of the collision-
free beliefs becomes:�������

¯

b

i
i = ˜bi if at−i = aon,

¯

b

j
i = Px

(xti � ¯bj
i−1, ˜ui, ao↵ , xti ∉XO) if at−i ≠ aon.

(16)
Unlike (14), the above evolution is not deterministic but is
probabilistic. That is, under each localization action, there
is a probability associated with the transition from one
collision-free belief to the next one, and the remaining
probability mass is assigned to the collision with an obstacle.
Therefore, by reasoning over ¯

b

j
i instead of bti , the belief

graph can be greatly reduced in size at the cost of introducing
probabilistic transitions. This probabilistic model is, in fact,
an MDP defined as follows.

An MDP is a tuple M = (S, s
init

,Act, P ), where S is a
non-empty finite set of states, s

init

∈ S is the initial state, Act
is a non-empty finite set of actions, and P ∶ S×Act→ D(S)
is a (partial) probabilistic transition function. A cost function
for MDP M is a (partial) function C ∶ S ×Act → R≥0 such
that C(s, a) is defined iff P (s, a) is defined.

The construction of the MDP for the evolution of the robot
is as follows. The state space S consists of states of the form
s

j
i , for 0 ≤ i ≤ �'�, 0 ≤ j ≤ i, that correspond to beliefs ¯

b

j
i ,

where s

i
i indicates that the robot’s belief is ˜

bi, and s

0
0 is the

initial state. In addition, S includes states s

coll

, s

targ

, s

free

,
which correspond to the robot being in collision, target,
and free space, respectively. The set of MDP actions is
Act = {a

o↵

, a

on

, a

sbo

}, where a

sbo

represents the sequence
of actions needed to fully activate localization, which begins
with a

start

, continues with a

boot

, and ends with a

on

.
The transition probabilities for states s

j
i are computed as

follows. For actions a
on

and a

o↵

, the values can be computed
by evolving ¯

b

j
i according to (16). In practice, techniques

such as Kalman Filter or Particle Filter can be employed
to compute these evolutions as well as their corresponding
transition probabilities. For action a

sbo

in state s

j
i , i.e., ¯

b

j
i ,

we first find the smallest index m, i < m ≤ �'�, such that∑m
k=i+1�tk > T

boot

, which indicates that booting process
becomes complete at some point between tm−1 and tm if
initialized at ti. Therefore, we compute the transition proba-
bilities of a

sbo

by combining the previously computed prob-
abilities of action a

o↵

in states s

j
i , s

j
i+1, . . . , sjm−2 followed
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by the evolution of ¯

b

j
m−1, initialized with the localization

off. After the remainder of the booting time, the localization
comes on and ¯

b

m
m is reached. Once the computations for all

s

j
i states are complete, we check the probability of being in

the target region or in the free space for states with i = �'�.
The MDP cost C at state s

j
i under a ∈ Act is the expected

resource usage by the robot starting from belief ¯

b

j
i at time

point ti to the next time point ti+1 under the corresponding
localization action. Formally,

C(sji , a) = � ti+1
ti

EX(c(xt,ut, at))dt, (17)

where EX(c(xt,ut, at)) is given by (10), xti ∼ ¯

b

j
i , and

at ∈ A corresponds to the MDP action a ∈ Act.
The size of the state space of this MDP is quadratic in

the length of ', i.e., �S� = (�'� + 2)(�'� + 1)�2 + 3, and there
are at most two actions per state. The implementation of the
algorithm can be made parallel by constructing the diagonal
levels of the triangle-shaped state space in Fig. 2b inde-
pendently, further reducing the complexity from quadratic
to linear in the length of '.

B. Problem Reduction

A policy for MDP M is a function ⇡ ∶ S → D(Act) that
associates every state with a distribution according to which
the next action is chosen. From the above construction of
the MDP M and definition of its action a

sbo

, it follows that
every feasible localization schedule for the robot corresponds
to a policy for M, and vice versa, every policy ⇡ ofM implies a feasible localization schedule &⇡ defined as
&⇡(bti) = ⇡(sji ). Thus, E

cost

, P
coll

, and P

targ

in (11), (12),
and (13), respectively, for the robot become the following
over M:

E

cost

(&⇡) = E⇡� �'�−1�
k=0

C(sk,⇡(sk))�, (18)

P

coll

(&⇡) = P⇡(scoll), (19)
P

targ

(&⇡) = P⇡(starg), (20)

where E⇡ and P⇡(s) denote the expectation over the paths
of M and the probability of reaching state s under policy
⇡, respectively. Therefore, Problem 1 reduces to a multi-
objective optimization problem over M, where the goal
is to construct a policy that minimizes (18) and (19) and
maximizes (20).

There exist algorithms and off-the-shelf tools that solve
the above multi-objective problem for MDPs, e.g., [5]. These
algorithms construct the Pareto front, i.e., set of all optimal
trade-offs between the objectives through a value iteration
procedure [4]. Given a Pareto point in this set, the algorithms
generate the corresponding policy using linear programming
[3], [18]. The complexity of this algorithm is polynomial
in the size of the MDP. We first construct the Pareto front
using these algorithms. Then, by the choice of the designer,
we generate the desired policy, i.e., localization schedule.

We note that the obtained localization schedule for the
continuous system with trajectory ' is optimal with respect

to the user-provided waypoints, a discretization of '. As
this discretization is refined (increasing the number of way-
points), the obtained optimality approaches the true one in
the continuous domain.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of the method
in three case studies. First, we illustrate the proposed frame-
work on a scenario involving a second-order unicycle robot
with energy as a resource cost and analyze the optimal
performance-energy trade-offs for three different reference
trajectories in simulations. Second, we perform the same
analysis on a commercially available planetary rover and de-
ploy the rover with the obtained schedules in an experimental
setup. Third, we demonstrate the potential of the framework
in aiding the designer to choose the hardware components,
specifically a computer, for a robotic system.

A. Second-Order Unicycle
Setup: We considered a mobile robot with (second-order)

unicycle dynamics given by

ẋ1 = v cos ✓ +w1, ẋ2 = v sin ✓ +w2, (21)

v̇ = u1 +w3,
˙

✓ = u2 +w4, (22)

where x1, x2 ∈ [0,10] indicate the position, v is the speed,
and ✓ is the heading angle of the robot. The control inputs u1

and u2 are the acceleration and angular velocity, respectively,
and the motion noise w is sampled from N (0,�2

wI) with
�w = 0.01, and I is the identity matrix. The robot mea-
surements were modeled as z = x + v�, where sensor noise
v

� ∼ N (0,�2�I) for � ∈ {od, lo}. For odometry, �
od

= 0.2,
and for localization �

lo

= 0.03.
We focused on trade-off analysis of the performance

objectives, i.e., collision avoidance and target reaching, and
energy consumption as the resource objective. The energy
consumption model was taken from [2]. Intuitively, the
energy consumed by the robot is the sum of the energy
consumed by the localization module and the rest of the
system. Without loss of generality, we attribute the latter
mainly to the motion, i.e., motors, and the CPU. Formally,
the energy cost function c

en

∶X ×U ×A→ R≥0 is defined as
c

en

= c
enl

+ c
enm

. The localization energy cost (per unit time)
c

enl

∶X ×U ×A→ R≥0 is:

c

enl

(x,u, a) = �����������
E

boot

T
boot

if a ∈ {a
start

, a

boot

},
P

on

if a = a
on

,

0 if a = a
o↵

,

(23)

for all x ∈X,u ∈ U , where E
boot

and T

boot

are the energy and
time required to turn on the localization, respectively. P

on

is
its power demand when active that can be estimated as the
sum of the power demand of the sensors of the localization
module, taken directly from their specification, and the power
consumed by the CPU for the localization algorithm that
processes sensory inputs. The energy cost function for the
rest of the system is defined as c

enm

(x,u, a) = P
mot

+P
CPU

,
for all x ∈X,u ∈ U,a ∈ A, where P

mot

and P

CPU

are power
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Fig. 3: Workspace of the unicycle robot. Obstacle and target regions
are shown in black and green, respectively. The waypoints of
reference trajectories '

op

, '
na

, and '
wi

are depicted as dark blue
dots. In light blue, we show the corresponding robot trajectories
using feedback controller in (24) and localization schedule &

on

.

demands of the motors and the CPU (when not executing the
localization algorithm). The expected energy consumption
E

en

is then computed using equations in Sec. IV-C.1. In
this example, we used the above model with the following
parameters. The localization module used a camera and an
algorithm to process the images at rate 16Hz. The power
demand of the module when active was P

on

= 8W, and the
module required time T

boot

= 5 s and energy E

boot

= 40 J to
boot. The remaining power consumption for the robot was
approximated as P

mot

+ P
CPU

= 42W.
We considered a workspace with several obstacles and a

target region, and three reference trajectories as depicted in
Fig. 3. The trajectories were: '

op

through open space with 26
waypoints; '

na

between narrow obstacles with 27 waypoints;
'

wi

winding around obstacles with 39 waypoints. The way-
points are shown as dark blue dots in Fig. 3. For reachability
of the waypoint ˜

x = (x̃1, x̃2) and stabilization of the belief
for localization on, we used dynamic feedback linearization
(DFL) controller to linearize the unicycle dynamics as in [24]
and an LQG controller on the linearized dynamics given by:

u1 = ū1 cos ✓ + ū2 sin ✓, u2 = ū2

v
cos ✓ − ū1

v
sin ✓,

ū1 = k1(x̃1 − x̂1) − k2 x̂3 cos x̂4, (24)
ū2 = k3(x̃2 − x̂2) − k4 x̂3 sin x̂4,

where x̂i is the ith component of the mean of the state
estimate, the output of Kalman filter, and k1 = k3 = 1 and
k2 = k4 = 2.236 are feedback gains. Fig. 3 depicts the robot
trajectories under no noise.

Pareto Fronts: We constructed an MDP for each reference
trajectory according to the abstraction algorithm in Sec. V-A
by using a Particle Filter. They consisted of 656, 708, and
1 488 state-action pairs for '

op

, '
na

, and '

wi

respectively.
We then computed the Pareto front for the three objectives of
collision avoidance, target reaching and energy consumption

for each reference trajectory using PRISM-games [6]. In
Table I, we present the plots and list the vertices of the
convex Pareto fronts and compare their values against the
ones of the schedule &

on

, which keeps the localization module
on at all times.

Every point on the surface of the Pareto front corresponds
to a particular optimal trade-off between the three objectives
and there exists a localization schedule that achieves it. A
bound on a value of an objective, e.g., the probability of
collision should be at most 0.01, imposes a slice through the
surface that divides the Pareto front into trade-offs which
are achievable with the desired bound and those which are
not. A projection of the Pareto front to a lower dimension
is the Pareto front for the subset of objectives. For example,
in plots in Tables Ia-c, the projection onto the bottom plane
represents the optimal trade-offs between the target-reaching
and collision probabilities, regardless of the expected energy
consumption.

In all three cases, the localization schedule &
on

is not Pareto
optimal. That means it is not efficient to keep localization
on at all times because there exist localization schedules that
have the same probabilistic guarantees as &

on

, i.e., P
targ

= 1
and P

coll

= 0, while saving energy by turning localization off.
On the other hand, the localization schedule &

o↵

, which keeps
the localization off at all times, is Pareto optimal in all three
cases. While &

o↵

tends to decrease the energy consumption,
this may not be a desirable schedule due to low performance
guarantees. Generally, Pareto-optimal schedules save 60-80%
of total energy and 72-100% of localization energy compared
to &

on

.
Localization Schedules: For each reference trajectory, we

generated schedules for two Pareto points using PRISM [5].
We simulated 500 sample robot trajectories under each
localization schedule and Fig. 4 depicts 100 of them. The
first set of schedules correspond to the Pareto points with
P

targ

= 1, P
coll

= 0 (top-left images in Fig. 4). As shown in
these figures, to ensure that the target region is reached with
probability 1, these schedule turn on localization only at the
critical waypoints: near obstacles to ensure safety and right
before the target to ensure ending in target. The second set of
schedules correspond to &

o↵

for '

op

and Pareto points with
P

targ

= 0.97 and P

coll

= 0.03 for '

na

and '

wi

(bottom-right
images in Fig. 4). These schedules trade off the performance
by a small percentage to save energy. As shown in bottom-
right image in Fig. 4a, this schedule keeps localization off for
the entire '

op

, resulting in missing the target 14% of times
(loss in performance) in trade-off for 79% gain in energy.
For '

na

and '

wi

, the schedules turn on the localization only
at two extremely critical points; one very close to an obstacle
and one before the target. These schedules trade off 3% loss
in performance to gain 73% to 75% in energy. To summarize,
the simulations suggest that the need for the localization to
be active grows with the level of noise and proximity of
obstacles.

Validation: In the simulations above, the average perfor-
mance of the robot with respect to all three objectives was
within 3% of the theoretical values (performance guarantees
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TABLE I: Pareto fronts computed for the second-order unicycle. For each of the three reference trajectories, we list the corner points of
the Pareto front, namely their probability of reaching the target P

targ

, the probability of collision P
coll

and the expected total energy E
en

with the fraction of it consumed by the localization system E
enl

. For comparison, we also list the performance guarantees of the schedule
&
on

and the percentage of the total and localization energy saved by Pareto-optimal schedules compared to &
on

. On the right, Pareto fronts
are visualized in three-dimensional space. For better readability of the images, we plot the projection of the polytopes onto two planes.

(a) Open trajectory '
op

.

P
targ

P
coll

E
en

fraction E
enl

&
on

1 0 21790.20 3486.44

Pareto points: E
en

and E
enl

saved over &
on

1 (&
o↵

) 0.8640 0 4502.19 0 79.34% 100.00%

2 1 0 5243.21 176.91 75.94% 94.93%
0.08

0.06

0.8 0.04

4400

p(Collision)

0.85
0.020.9

p(Target)

4600

0.95 0

Pareto Front

1

4800

-0.021.05

En
er
gy

5000

5200

(b) Narrow trajectory '
na

.

P
targ

P
coll

E
en

fraction E
enl

&
on

1 0 22476.90 3596.30

Pareto points: E
en

and E
enl

saved over &
on

1 0.8540 0 8213.72 840.07 63.46% 76.64%

2 1 0 8935.53 1013.56 60.25% 71.82%

3 0.9980 0.0020 8211.67 869.09 63.47% 75.83%

4 0.8523 0.0020 7491.30 695.95 66.67% 80.65%

5 0.9940 0.0060 7459.44 690.57 66.81% 80.80%

6 0.8250 0.0060 6734.18 516.92 70.04% 85.63%

7 0.9841 0.0159 6748.25 519.60 69.98% 85.55%

8 0.9703 0.0297 5959.24 337.93 73.49% 90.60%

9 0.8054 0.0297 5290.72 174.74 76.46% 95.14%

10 0.8306 0.0159 6018.15 346.52 73.23% 90.36%

11 0.9131 0.0869 5060.09 159.01 77.49% 95.58%

12 (&
o↵

) 0.7689 0.0869 4396.48 0.00 80.44% 100.00%

4500

5000

0.7

5500

6000

6500

7000

En
er
gy

7500

8000

8500

0.8

9000

Pareto Front

p(Target)

0.9 0.120.10.08

p(Collision)

0.061 0.040.020

(c) Winding trajectory '
wi

.

P
targ

P
coll

E
en

fraction E
enl

&
on

1 0 33354.40 5336.70

Pareto points: E
en

and E
enl

saved over &
on

1 0.9120 0 10596.90 837.37 68.23% 84.31%

2 0.9200 0 10634.30 811.57 68.12% 84.79%

3 1 0 11316.77 1011.48 66.07% 81.05%

4 0.9980 0.0020 10633.27 876.41 68.12% 83.58%

5 0.9102 0.0020 9914.84 702.64 70.27% 86.83%

6 0.9261 0.0020 9977.65 674.78 70.09% 87.36%

7 0.9243 0.0040 9296.83 540.38 72.13% 89.87%

8 0.9940 0.0060 9297.63 539.62 72.12% 89.89%

9 0.9006 0.0060 8560.97 363.32 74.33% 93.19%

10 0.9683 0.0317 8325.83 340.42 75.04% 93.62%

11 0.8773 0.0317 7608.22 168.68 77.19% 96.84%

12 0.9012 0.0988 7294.80 157.48 78.13% 97.05%

13 (&
o↵

) 0.8345 0.0988 6642.58 0 80.08% 100.00%

14 0.9012 0.0433 7640.69 179.72 77.09% 96.63%

6500

7000

0.8

7500

8000

8500

9000

9500

En
er
gy

10000

0.85

10500

11000

11500

0.9

Pareto Front

p(Target)

0.120.95 0.1

p(Collision)

0.080.061 0.040.020

of the Pareto points). In addition, we randomly selected 10
more Pareto points and performed similar computations. All
the simulation results were within 4% of the theoretical

values. We note that these error values are expected to
decrease as the number of simulations and the number of
particles in the particle filter increase.
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(a) Open trajectory '
op

. (b) Narrow trajectory '
na

. (c) Winding trajectory '
wi

.

Fig. 4: Sample trajectories under two localization schedules for each trajectory '
op

, '
na

, and '
na

for the unicycle robot. The light, medium,
and dark blue trajectory segments indicate localization status a

o↵

, a
start

and a
boot

, and a
on

, respectively. In the top-left images in (a)-(c),
the performance guarantees are P

targ

= 1 and P
coll

= 0, the same as &
on

, while saving 60% to 75% energy over &
on

. In the bottom-right
images, the performance guarantees are P

targ

= 0.86 and P
coll

= 0 for '
op

and P
targ

= 0.97 and P
coll

= 0.03 for '
na

and '
wi

in return for
additional energy saving of 73% to 75%.

B. Rover Experiments

Setup: The robotic platform used in this experimental case
study is ARC Q14 planetary rover shown in Fig. 1. It is de-
signed to mimic the configuration and specification found on
rovers deployed for planetary exploration. The rover’s base is
rectangular (0.8 m by 0.9 m) and has 4 wheels and 8 motors.
It can operate in two kinematic modes: Ackermann steering
and differential drive with maximum speed of 0.5 m�s. The
robot is equipped with a Point Grey Bumblebee XB3 camera.
We use Dub4 [25] as the high accuracy localisation module,
while low accuracy measurements are obtained using Visual
Odometry [26]. The on-board computations are carried out
on MicroSVR computer. The energy consumption model of
the robot is the same as the one in Sec. VI-A taken from
[24] that previously studied this platform.

We modeled the motion of the rover as the unicycle
in Sec. VI-A with constrained velocity, turn angle, and
acceleration. We used the same DFL as above to linearize
the dynamics and employed receding horizon controller for
reachability. Kalman filter was utilized for state estimation.
The online control computations were performed in MAT-
LAB on a MacBook Pro with 2.7 GHz Intel Core i5 and 8
GB of memory, which communicated to the robot via Wi-Fi.
We estimated motion and measurement noise as N (0,�2

I),
where �w = 0.1, �

od

= 0.1, and �

lo

= 0.01, and the
frequency of sensor measurements was 4 Hz. The robot’s
task was to navigate from an entrance to exit door of a
10m-by-6m meeting room cluttered with various furniture
pieces. The robot was first driven by a human to learn
the reference trajectory ' (teach phase), during which the
localization module automatically extracts waypoints of '.
The environment and these waypoints are shown in Fig. 5a.

Pareto Front: We computed the Pareto front for this
scenario by first generating the abstraction MDP and then our
multi-objective algorithm. We considered the same objectives
as in Sec.VI-A; the vertices of the Pareto front are shown
in Table II. In this case study, both &

on

and &

o↵

are Pareto
optimal; one gives rise to the highest P

targ

and the other
results in the smallest E

en

. Note that it is possible to save

18%, 24%, and 32% in E

en

by sacrificing small percentage
(0.5%, 1%, and 5%, respectively) in P

targ

.
Robot Deployment: We deployed the robot under &

on

and
&3. Fig. 5b-c show the robot’s trajectories, localization status
in different shade of blue, state estimate in orange, and
belief’s variance’s projection onto 2-D in gray. The robot
itself is shown as black-edged rectangles along the trajectory.
As evident in these figures, under &

on

, the robot is always safe
because it is able to stay within a very close proximity of '
at all times. Under &3, the robot uses its localization only at
the very beginning and for the last two waypoints. The use
of localization at the beginning sets the robot’s trajectory
and belief on the right path. Once localization is turned off,
the uncertainty in the robot’s belief grows, but the robot is
still able to continue with the path without deviating too far
from the ' thanks to its initial localization. Once the robot is
near a point that is dangerously close to an obstacle, and '

requires sharp maneuvers, the robot turns on its localization
to reduce its uncertainty and enable itself to perform the
maneuvers. Note that, under &3, once the localization is
turned back on, on account of the increased uncertainty, the
robot is required to make a sharper turn than under &

on

to
be able to reach the target. The framework is aware of such
uncertainties; therefore, under &3, the performance guarantee
is reduced by 1% to save 24% in energy in comparison to
&

on

, resulting in an elongation of the battery life. Fig. 5c
illustrates 50 trajectories that was obtained in simulation
prior to deployment of the robot. Note that this figure shows
only the trajectory of the center of the robot; the robot’s
volume needs to be added to every point along the trajectory.

C. Robot with choices of PCs

Hardware choices in robot design affect the capabili-
ties of the robot and can result in different achievable
resource-performance trade-offs. In this example, we ana-
lyzed resource-performance trade-offs for a mobile robot
with two different mini PCs. This type of analysis can aid the
designer in choosing the best suitable hardware to achieve a
desired level of performance.
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(a) Robot trajectory under &
on

. (b) Robot trajectory under &3. (c) Simulation trajectories under &3.

Fig. 5: Robot trajectories in experiments and simulations. The waypoints are shown as light blue dots in (a). The light, medium, and
dark blue trajectory segments indicate localization status a

o↵

, a
start

and a
boot

, and a
on

, respectively. In (a) and (b), robot’s belief is shown
in orange (state estimate) and gray (projection of variance), and robot’s orientation by black-edged boxes. Under &

on

, the performance
guarantees are P

targ

= 1 and P
coll

= 0 while they are P
targ

= 0.99 and P
coll

= 0.01 for &3 in trade-off for 24% reduction in E
en

.

TABLE II: Pareto fronts for the planetary rover. E
en

and E
enl

denote
and the total and localization energy, respectively. For comparison,
we list the energy savings of Pareto-optimal schedules compared to
&
on

.

P. Pt P
targ

P
coll

E
en

E
enl

E
en

, E
enl

saved

1 0.5000 0.0000 6155.52 507.90 29.99% 65.34%

2 (&
on

) 1.0000 0.0000 8791.87 1465.31 0.00% 0.00%

3 0.9900 0.0100 6713.23 650.88 23.64% 55.58%

4 0.9950 0.0050 7215.16 814.58 17.93% 44.41%

5 (&
o↵

) 0.4428 0.0050 4805.86 0.00 45.34% 100.00%

6 0.9552 0.0448 5969.96 325.25 32.10% 77.80%

Setup: We modeled the robot dynamics as

ẋ1 = 0.1x2 − 0.3x1 + u1 +w1,

ẋ2 = 0.1x1 − 0.3x2 + u2 +w2

where x1 ∈ [0,10] and x2 ∈ [0,5] indicate the 2-D po-
sition of the robot and the process noise distribution isN (0,0.072I). The measurement models for odometry and
localization module were z = x + v with noise distributionN (0,0.22I) and N (0,0.032I), respectively. We considered
the workspace shown in Fig. 6 with obstacles and a target
region and a trajectory with 40 waypoints. The controllers
for the waypoints were designed by LQG method. When
localization system was on, a controller was terminated
when the state estimate reaches (a proximity of) the steady
state distribution around the associated waypoint. The time
triggers for localization off were time durations computed
based on the nominal system, i.e., without process and
measurement noise.

We analyzed the robot running with IPC i3 Barebone
(∼$600) and IPC2 i5 Barebone (∼$700). The two computers
processed localization measurements at rates proportional
to their computational power, namely 10Hz and 16Hz,
respectively. With IPC2, the robot received feedback about its
position at higher rate which allowed for faster convergence
to waypoints. Thus using the localization module, the robot
traversed the trajectory in less time with IPC2 than with
IPC. Odometry measurements were processed at 20Hz when

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Fig. 6: Workspace and reference trajectory of the mobile robot.
The waypoints of the reference trajectory are depicted as dark blue
dots. In light blue, we show the corresponding robot trajectory using
nominal system.

the localization module was not active with both computers.
We then focused on trade-off analysis for the performance
objectives P

targ

and P

coll

, and two resource objectives of the
expected energy consumption E

en

and expected trajectory
duration E

dur

.
The energy consumption was given by the following pa-

rameters. The power consumption of localization module and
motors were estimated as 5W and 30W, respectively. The
IPC and IPC2 require power 17W and 15W, respectively.
This amounts to an overall power consumption of 44W
and 42W when localization module was active, respectively.
When localization was not active, the power savings were
estimated as 5W for the sensors and one fifth of the
computer power consumption, i.e., 8W for both computers.
The module required time T

boot

= 5 s and energy 40 J to boot.
Pareto Fronts: The MDP constructed for the reference

trajectory consisted of 1 529 state-action pairs for both com-
puters. The convex Pareto fronts for the four objectives of
target reaching, collision avoidance, energy consumption and
trajectory duration had 11 vertices for IPC and 22 vertices
for IPC2. In Table III, we list only the vertices for which the
probability of reaching the target P

targ

is at least 0.95.
In neither cases, localization schedule &

on

that keeps the
localization module on at all times is Pareto optimal be-
cause there exist localization schedules that have the same
probabilistic guarantees as &

on

, i.e., P

targ

= 1 and P

coll

=
0, while saving energy and time by turning localization
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off. On the other hand, localization schedule &

o↵

, which
keeps the localization off at all times, is Pareto optimal for
both IPC and IPC2 as it minimizes the expected energy
consumption and duration. This however comes at a cost
of poor performance guarantees. As indicated in Table III,
generally, Pareto-optimal schedules save 34-60% of energy
and 31-52% of time compared to &

on

for IPC, and 20-50%
of energy and 17-40% of time for IPC2.

Hardware Comparison: For given performance guaran-
tees, the robot can complete the reference trajectory faster
with IPC2 than with IPC, e.g., in 118.87 s compared to
126.42 s for P

targ

= 1 and P

coll

= 0. More interestingly,
while the IPC2 has higher power requirements with 17W
relative to 15W for IPC, the analysis shows that the robotic
system consumes less energy with IPC2 than with IPC
in completing the trajectory. That means that IPC2 offers
overall better resource-performance trade-offs than IPC for
the given trajectory. This, however, comes at the cost of
higher dollar value for IPC2.

The designer may also wish to choose the computer based
on the duration or energy rather than performance guarantees
as the primary preference. For example, if it is sufficient to
complete the trajectory in expected time E

dur

≤ 130 s, IPC is
a better choice because it can achieve the best performance
at lower dollar value. On the other hand, if the constraint is
E

dur

≤ 120 s, only IPC2 can guarantee best performance.
We can also analyze the Pareto fronts in more detail. For

example, consider time constraint E
dur

≤ 90 s. By projecting
the Pareto fronts onto E

en

and fixing E

dur

= 90 s, we
obtain the convex sets of trade-offs between performance
objectives P

targ

and P

coll

achievable by the two computers
within the given time bound. For IPC, the set has vertices
P

targ

= 0.938, P

coll

= 0.062 (for maximizing P

targ

), and
P

targ

= 0.887, P
coll

= 0 (for minimizing P

coll

). For IPC2, the
set has vertices P

targ

= 0.943, P
coll

= 0.057 (for maximizing
P

targ

), and P

targ

= 0.897, P
coll

= 0.047 (for minimizing P

coll

).
Thus, while finishing the trajectory within 90 s, there exists
a localization schedule for IPC that guarantees no collision
while no such schedule exists for IPC2. On the other hand,
with IPC2 the achievable probability of reaching the target
location is higher than for IPC. Using this analysis, the
designer can make a well-informed choice according to given
preferences.

VII. FINAL REMARKS AND FUTURE WORK

We have introduced a general framework for the explo-
ration of performance-resource trade-offs and demonstrated
its efficacy in module scheduling and robot design on case
studies. The framework can be adapted to schedule other
modules such as perception or different motors. The frame-
work can also be extended to scenarios, in which the aim is
to schedule the use of more than one localization module,
providing state estimates at different levels of certainty.
Intuitively, the only change to the framework is in the
abstraction step, i.e., the MDP construction. The additional
modules cause an increase in both action set and state space
of the MDP.

TABLE III: Pareto fronts for the planetary rover with two different
mini PCs. In the tables, E

en

and E
dur

denote and the energy
consumption and trajectory duration, respectively. We only list
points with P

targ

≥ 0.95. For comparison, we list the performance
guarantees of the schedule &

on

and the energy and time savings of
Pareto-optimal schedules compared to &

on

.

(a) IPC i3 Barebone.

P
targ

P
coll

E
en

E
dur

&
on

1 0 9468.67 182.09

P. Pt E
en

, E
dur

saved

1 1.0000 0.0000 6282.54 126.42 33.65% 30.57%

2 0.9980 0.0020 5759.97 117.06 39.17% 35.71%

3 0.9920 0.0080 5026.35 104.72 46.92% 42.49%

4 0.9821 0.0179 4689.18 99.67 50.48% 45.26%

5 (&
o↵

) 0.8798 0.0660 3827.27 86.98 59.58% 52.23%

(b) IPC2 i5 Barebone.

P
targ

P
coll

E
en

E
dur

&
on

1 0 7185.22 143.71

P. Pt E
en

, E
dur

saved

1 1.0000 0.0000 5762.75 118.87 19.80% 17.28%

2 0.9980 0.0020 5214.40 110.93 27.43% 22.81%

3 0.9960 0.0040 4985.78 106.74 30.61% 25.72%

4 0.9900 0.0100 4691.53 101.92 34.71% 29.08%

5 0.9880 0.0120 4604.97 100.55 35.91% 30.03%

6 0.9841 0.0159 4470.06 97.95 37.79% 31.84%

7 0.9802 0.0198 4371.77 96.33 39.16% 32.97%

8 0.9645 0.0355 4098.98 92.87 42.95% 35.37%

9 (&
o↵

) 0.8570 0.0883 3601.42 85.75 49.88% 40.33%

There are multiple directions for future work. First, in
this work we focused on total expected resource costs, but
more complex cost measures such as long-run average or
ratio costs might be of interest. Second, the delay between
making an observation and computing the corresponding
state estimate introduces additional uncertainty. An attractive
future direction is to explore the Pareto front by considering
these delays. Finally, solving the problem for a combination
of modules, e.g., localization and perception, and, ultimately,
localization, perception and planning, poses a great chal-
lenge, which should be explored for full trade-off analysis
of the autonomy modules.
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