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Abstract— In this paper, we consider the problem of deploy-
ing a robot from a specification given as a temporal logic
statement about some properties satisfied by the regions of
a large, partitioned environment. We assume that the robot
has noisy sensors and actuators and model its motion through
the regions of the environment as a Markov Decision Process
(MDP). The robot control problem becomes finding the control
policy maximizing the probability of satisfying the temporal
logic task on the MDP. For a large environment, obtaining
transition probabilities for each state-action pair, as well as
solving the necessary optimization problem for the optimal
policy are usually not computationally feasible. To address
these issues, we propose an approximate dynamic programming
framework based on a least-square temporal difference learning
method of the actor-critic type. This framework operates on
sample paths of the robot and optimizes a randomized control
policy with respect to a small set of parameters. The transition
probabilities are obtained only when needed. Hardware-in-the-
loop simulations confirm that convergence of the parameters
translates to an approximately optimal policy.

I. INTRODUCTION

One major goal in robot motion planning and control is
to specify a mission task in an expressive and high-level
language and convert the task automatically to a control
strategy for the robot. The robot is subject to mechanical
constraints, actuation and measurement noise, and limited
communication and sensing capabilities. The challenge in
this area is the development of a computationally efficient
framework accommodating both the robot constraints and
the uncertainty of the environment, while allowing for a
large spectrum of task specifications. Temporal logics such
as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL) have been promoted as formal task specification
languages for robotic applications [1]–[4], due to their high
expressivity and closeness to human language.

In this paper, we assume that the robot model in the envi-
ronment is described by a (finite) Markov Decision Process
(MDP). In this model, the robot can precisely determine its
current state, and by applying an action (corresponding to a
motion primitive) enabled at each state, it triggers a transition
to an adjacent state with a fixed probability. We are interested
in controlling the MDP robot model such that it maximizes
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the probability of satisfying a temporal logic formula over
a set of properties satisfied at the states of the MDP. By
adapting existing probabilistic model checking [5]–[7] and
synthesis [8], [9] algorithms, we recently developed such
computational frameworks for formulas of LTL [10] and a
fragment of probabilistic CTL [11].

These approaches assumed that the transition probabilities
are known for each state-action pair of the MDP, which can
be computed by using a Monte-Carlo method and repeated
forward simulations. However, this is often not feasible for
realistic robotic applications, even if an accurate model or
a simulator of the robot in the environment is available.
The problem is even more challenging when considering
temporal logic specifications, due to the size of the automata
corresponding to these specifications.

In this paper, we show that approximate dynamic program-
ming can be effectively used to address the above limitations.
For large dynamic programming problems, an approximately
optimal solution can be provided using actor-critic algo-
rithms [12]. In particular, actor-critic algorithms with Least
Squares Temporal Difference (LSTD) learning have been
shown recently to be a powerful tool to solve large-sized
problems [13], [14]. This paper extends from [15], in which
we proposed an actor-critic method for maximal reachability
(MRP) problems, i.e., maximizing the probability of reaching
a set of states, to a computational framework that finds a
control policy such that the probability of its paths satisfying
an arbitrary LTL formula is locally optimal over a set of
parameters. This set of parameters is designed to tailor to
this class of approximate dynamical programming problems.

Our method requires transition probabilities to be gener-
ated only along sample paths, and is therefore particularly
suitable for robotic applications. To the best of our knowl-
edge, this is the first attempt to combine temporal logic
formal synthesis with actor-critic type methods. We illustrate
the algorithms with hardware-in-the-loop simulations using
an accurate simulator of our Robotic InDoor Environment
(RIDE) platform (see Fig. 1). We omit proofs in this paper
due to space constraints. Full proofs and extra details of this
paper can be found in the technical report [16].

Notation: We use bold letters to denote sequences and
vectors. Vectors are assumed to be column vectors. Transpose
of a vector x is denoted by xT. ‖ · ‖ stands for the Euclidean
norm. |S| denotes the cardinality of a set S.

II. PROBLEM FORMULATION AND APPROACH

We consider a robot moving in an environment partitioned
into regions such as the Robotic Indoor Environment (RIDE)
(Fig. 1). Each region in the environment is associated with
a set of observations. Observations can be Un for unsafe
regions, or Up for a region where the robot can upload
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Fig. 1. Robotic InDoor Environment (RIDE) platform. Left: An iCreate
mobile platform moving autonomously through the corridors and intersec-
tions of an indoor-like environment. Right: The partial schematics of the
environment. The black blocks represent walls, and the grey and white
regions are intersection and corridors, respectively. The labels inside a region
represents observations associated with regions, such as Un (unsafe regions)
and Ri (risky regions).

data. We assume that the robot can detect its current region.
Moreover, the robot is programmed with a set of motion
primitives allowing it to move from a region to an adjacent
region. To capture noise in actuation and sensing, we make
the natural assumption that, at a given region, a motion
primitive designed to take the robot to a specific adjacent
region may take the robot to a different adjacent region.

Such a robot model naturally leads to a labeled Markov
Decision Process (MDP), which is defined below.
Definition II.1 (Labeled Markov Decision Process). A la-
beled Markov decision process (MDP) is a tuple M =
(Q, q0, U,A, P,Π, h), where

(i) Q = {1, . . . , n} is a finite set of states;
(ii) q0 ∈ Q is the initial state;

(iii) U is a finite set of actions;
(iv) A : Q → U maps a state q ∈ Q to actions enabled at

q;
(v) P : Q × U × Q → [0, 1] is the transition probability

function such that for all q ∈ Q,
∑
q′∈Q P (q, u, q′) = 1

if u ∈ A(q), and P (q, u, q′) = 0 for all q′ ∈ Q if
u /∈ A(q);

(vi) Π is a set of observations;
(vii) h : Q→ 2Π is the observation map.

Each state of the MDP M modeling the robot in the
environment corresponds to an ordered set of regions in the
environment, while the actions label the motion primitives
that can be applied at a region. For example, a state of
M may be labeled as I1-C1, which means that the robot
is currently at region C1, coming from region I1. Each
ordered set of regions corresponds to a recent history of the
robot trajectory, and is needed to ensure the Markov property
(more details on such MDP abstraction of the robot in the
environment can be found in, e.g., [11]; for our hardware-
in-the-loop set-up, see Sec. IV). The transition probability
function P can be obtained through extensive simulations of
the robot in the environment. We assume that there exists an
accurate simulator that is capable of generating (computing)
the transition probability P (q, u, ·) for each state-action pair

q ∈ Q and u ∈ A(q).
If the exact transition probabilities are not known, M

can be seen as a labeled non-deterministic transition system
(NTS) MN = (Q, q0, U,A, P

N ,Π, h), where P in M is
replaced by PN : Q×U×Q→ {0, 1}, and PN (q, u, q′) = 1
indicates a possible transition from q to q′ applying an
enabled action u ∈ A(q); if PN (q, u, q′) = 0, then the
transition from q to q′ is not possible under u.

A path on M is a sequence of states q = q0q1 . . . such
that for all k ≥ 0, there exists uk ∈ A(qk) such that
P (qk, uk, qk+1) > 0. Along a path q = q0q1 . . ., qk is
said to be the state at time k. The trajectory of the robot
in the environment is represented by a path q on M (which
corresponds to a sequence of regions in the environment).
A path q = q1q2 . . . generates a sequence of observations
h(q) := o1o2 . . ., where ok = h(qk) for all k ≥ 0. We call
o = h(q) the word generated by q.
Definition II.2 (Policy). A control policy for an MDPM is
an infinite sequence M = µ0µ1 . . ., where µk : Q × U →
[0, 1] is such that

∑
u∈A(q) µk(q, u) = 1, for all k ≥ 0.

Namely, at time k, µk(q, ·) is a discrete probability distri-
bution over A(q). If µ = µk for all k ≥ 0, then M = µµ . . .
is called a stationary policy. If for all k ≥ 0, µk(q, u) =
1 for some u, then M is deterministic; otherwise, M is
randomized. Given a policy M , we can then generate a set
of paths on M, by applying uk with probability µk(qk, uk)
at state qk for all time k.

We require the trajectory of the robot in the environment
to satisfy a rich task specification given as a Linear Temporal
Logic (LTL) (see, e.g., [5]) formula over a set of observations
Π. An LTL formula over Π is evaluated over an infinite
sequence o = o0o1 . . . (e.g., a word generated by a path on
M), where ok ⊆ Π for all k ≥ 0. We denote o � φ if
word o satisfies the LTL formula φ, and we say q satisfies
φ if h(q) � φ. Roughly, φ can be constructed from a set
of observations Π, Boolean operators ¬ (negation), ∨ (dis-
junction), ∧ (conjunction), −→ (implication), and temporal
operators X (next), U (until), F (eventually), G (always).
A variety of complex robotic tasks can be easily translated
to LTL formulas. An example of a complex mission task
specified as an LTL specification is given in Sec. IV.

We can then formulate the following problem: Given
a labeled MDP M = (Q, q0, U,A, P,Π, h) modeling the
motion of a robot in a partitioned environment and a task
specified as an LTL formula φ over Π; Find a control policy
that maximizes the probability of its paths satisfying φ.

In [10], we proposed a computational framework to solve
this problem by adapting methods from the area of prob-
abilistic model checking [5]–[7]. However, as mentioned
in Sec. I, this framework relies upon the fact that the
transition probabilities are known for all state-action pairs.
Even if the transition probabilities are obtained for each
state-action pair, computing the exact solution still requires
solving a linear program on the product of the MDP and
the automata representing the formula, which might be very
large (thousands or even millions of states). An approximate
method might be more desirable in such cases. For these

4688



reasons, we focus on the following problem in this paper.
Problem II.3. Given a labeled NTS MN =
(Q, q0, U,A, P

N ,Π, h) modeling a robot in a partitioned
environment, a mission task specified as an LTL formula φ
over Π, and an accurate simulator to compute transition
probabilities P (q, u, ·) given a state-action pair (q, u);
Find a control policy that approximately maximizes the
probability of its path satisfying φ.

In many robotic applications, the NTS model can be
quickly constructed for the robot in the environment. Our
approach to Prob. II.3 can be summarized as follows: First,
we proceed to translate the problem to a maximal reachability
probability (MRP) problem using MN and φ (Sec. III-
A). Given a randomized policy as a function of a set of
parameters, we use an actor critic framework to find a locally
optimal policy (Sec. III-B). The design of this randomized
policy suitable for Prob. II.3 is detailed in Sec. III-C. The
algorithmic framework presented in this paper is finally
summarized in Sec. III-D.

III. CONTROL SYNTHESIS

A. Formulation of the MRP Problem
The formulation of the MRP problem is based on [5]–[7],

[10] with modification if needed when using the NTS MN
instead of M. We start by converting the LTL formula φ
over Π to a so-called deterministic Rabin automaton.
Definition III.1 (Deterministic Rabin Automaton). A de-
terministic Rabin automaton (DRA) is a tuple R =
(S, s0,Σ, δ, F ), where

(i) S is a finite set of states;
(ii) s0 ∈ S is the initial state;

(iii) Σ is a set of inputs (alphabet);
(iv) δ : S × Σ→ S is the transition function;
(v) F = {(L(1),K(1)), . . . , (L(M),K(M))} is a set of

pairs of sets of states such that L(i),K(i) ⊆ S for all
i = 1, . . . ,M .

A run of a Rabin automatonR, denoted by r = s0s1 . . ., is
an infinite sequence of states in R such that for each k ≥ 0,
sk+1 ∈ δ(sk, α) for some α ∈ Σ. A run r is accepting if
there exists a pair (L,K) ∈ F such that r intersects with
L finitely many times and K infinitely many times. For any
LTL formula φ over Π, one can construct a DRA (for which
we denote by Rφ) with input alphabet Σ = 2Π accepting all
and only words over Π that satisfy φ (see [5]).

We then obtain an MDP as the product of M and Rφ,
which captures all paths of M satisfying φ.
Definition III.2 (Product MDP). The product MDP M×
Rφ between a labeled MDP M = (Q, q0, U,A, P,Π, h)
and a DRA Rφ = (S, s0, 2

Π, δ, F ) is an MDP P =
(SP , sP0, UP , AP , PP ,Π, hP), where

(i) SP = Q× S is a set of states;
(ii) sP0 = (q0, s0) is the initial state;

(iii) UP = U is a set of actions inherited from M;
(iv) AP is also inherited from M and AP((q, s)) := A(q);
(v) PP gives the transition probabilities:

PP((q, s), u, (q′, s′))=

{
P (q, u, q′) if q′ = δ(s, h(q))

0 otherwise;

Note that hP is not used in the product MDP. Moreover, P
is associated with pairs of accepting states (similar to a DRA)
FP := {(LP(1),KP(1)), . . . , (LP(M),KP(M))} where
LP(i) = Q× L(i), KP(i) = Q×K(i), for i = 1, . . . ,M .

The product MDP is constructed in a ways such that, given
a path (s0, q0)(s1, q1) . . ., the corresponding path s0s1 . . . on
M satisfies φ if and only if there exists a pair (LP ,KP) ∈
FP satisfying the Rabin acceptance condition.

We can make a very similar product between a la-
beled NTS MN = (Q, q0, U,A, P

N ,Π, h) and Rφ. This
product is also an NTS, which we denote by PN =
(SP , sP0, UP , AP , P

N
P ,Π, hP) := MN × Rφ, associated

with accepting sets FP . The definition (and the accepting
condition) of PN is exactly the same as for the product
MDP P . The only difference between PN and P is in PNP ,
which is either 0 or 1 for every state-action-state tuple.

From P or equivalently PN , we can proceed to construct
the MRP problem. To do so, it is necessary to produce
the so-called accepting maximum end components (AMECs).
An end component is a subset of an MDP (consisting of
a subset of states and a subset of enabled actions at each
state) such that for each pair of states (i, j) in P , there is a
sequence of actions such that i can be reached from j with
positive probability, and states outside the component cannot
be reached. An AMEC of P is the largest end component
containing at least one state in KP and no state in LP , for
a pair (KP , LP) ∈ FP .

A procedure to obtain all AMECs of an MDP is outlined
in [5]. This procedure is intended to be used for the product
MDP P , but it can be used without modification to find
all AMECs associated with P when PN is used instead of
P . This is because the information needed to construct the
AMECs is the set of none-zero probability transitions at each
state, and this information is already contained in PN .

If we denote S?P as the union of all states in all AMECs
associated with P , it has been shown in probabilistic model
checking (see e.g., [5]) that the probability of satisfying the
LTL formula is given by the maximal probability of reaching
the set S?P from the initial state SP0 (an MRP problem).
The desired optimal policy can then be obtained as the
policy maximizing this probability. If transition probabilities
are available for each state-action pair, then the solution to
this MRP problem can be solved as by a linear program
(see [5]). The resultant optimal policy is a stationary policy
M = µµ . . . defined on the product MDP P . To implement
this policy on M, it is necessary to use the DRA as a
feedback automaton to keep track of the current state sP
on P , and apply the action u where µ(sP , u) = 1 (since µ
is deterministic).

B. LSTD Actor-Critic Method

We now describe how relevant results in [15] can be
applied to solve Prob. II.3. An approximate dynamic pro-
gramming algorithm of the actor-critic type was presented
in [15], which obtains a stationary randomized policy (RSP)
(see Def. II.2) M = µθµθ . . ., where µθ(q, u) is a function of
the state-action pair (q, u) and θ ∈ Rn, which is a vector of
parameters. For the convenience of notations, we denote an
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RSP µθµθ . . . simply by µθ. In this sub-section we assume
that the RSP µθ(q, u) to be given, and we will describe in
Sec. III-C on how to design a suitable RSP.

Given an RSP µθ, actor-Critic algorithms can be applied
to optimize the parameter vector θ by policy gradient estima-
tions. The basic idea is to use stochastic learning techniques
to find θ that locally optimizes a cost function. In particular,
the algorithm presented in [15] is targeted at Stochastic
Shortest Path (SSP) problems commonly studied in literature
(see e.g., [17]). Given an MDP M = (Q, q0, U,A, P,Π, h),
a termination state q? ∈ Q and a function g(q, u) defining
the one-step cost of applying action u at state q, the expected
total cost is defined as:

ᾱ(θ) = lim
N→∞

E

{
N−1∑
k=0

g(qk, uk)

}
, (1)

where (qk, uk) is the state-action pair at time k along a path
under RSP µθ.

The SSP problem is formulated as the problem of finding
θ? minimizing (1). Note that, in general, we assume q? to be
cost-free and absorbing, i.e., g(q?, u) = 0 and P (q?, u, q?) =
1 for all u ∈ A(q?). Under these conditions, the expected
total cost (1) is finite. Then, an MRP problem as described in
Sec. III-A can be immediately converted to an SSP problem.
Definition III.3 (Conversion from MRP to SSP). Given the
product MDP P = (SP , sP0, UP , AP , PP , FP) and a set of
states S?P ⊆ SP , the problem of maximizing the probability
of reaching S?P can be converted to an SSP problem by
defining a new MDP P̃ = (S̃P , s̃P0, ŨP , ÃP , P̃P , gP), where
S̃P = (SP \ S?P) ∪ {s?P}, and s?P is a “dummy” terminal
state; s̃P0 = sP0 (without the loss of generality, we exclude
the trivial case where sP0 ∈ S?P ); ŨP = UP ; ÃP(sP) =
AP(sP) for all sP ∈ SP , and for the dummy state we set
ÃP(s?P) = ŨP ; The transition probability is redefined as
follows. We first define S̄?P as the set of states on P that
cannot reach S?P under any policy. We then define:

P̃P(sP , u, s
′
P)

=


∑

s′′P∈S?
P

PP(sP , u, s
′′
P), if s′P = s?P

PP(sP , u, s
′
P), if s′P ∈ SP \ S?P

for all sP ∈ SP \(S?P ∪ S̄?P) and u ∈ ÃP(sP). Moreover, for
all sP ∈ S̄?P and u ∈ ÃP(sP), we set P̃P(s?P , u, s

?
P) = 1

and P̃P(sP , u, sP0) = 1; For all sP ∈ S̃P and u ∈ ÃP(sP),
we define the one-step cost gP(sP , u) = 1 if sP ∈ S̄?P , and
g(sP , u) = 0 otherwise.

We showed in [15] that the policy minimizing (1) for the
SSP problem with MDP P̃ and the termination state s?P is
the solution to the MRP problem on P for the set S?P .

The SSP problem can also be constructed from PN . In
this case we obtain an NTS P̃N (S̃P , s̃P0, ŨP , ÃP , P̃

N
P , gP),

using the same construction as Def. III.3, except P̃NP is
defined as: P̃NP (sP , u, s

′
P)

=

{
max
s′′P∈S?

P

PNP (sP , u, s
′′
P), if s′P = s?P

PNP (sP , u, s
′
P), if s′P ∈ SP \ S?P

for all sP ∈ SP \(S?P ∪ S̄?P) and u ∈ ÃP(sP). Moreover, for
all sP ∈ S̄?P and u ∈ ÃP(sP), we set P̃NP (s?P , u, s

?
P) = 1

and P̃NP (sP , u, sP0) = 1.
Once the SSP problem is constructed, the algorithm pre-

sented in [15] is an iterative procedure that obtains a policy
that locally minimizes the cost function (1) by simulating
sample paths on P̃ . Each sample paths on P̃ starts at sP0

and ends when the termination state s?P is reached. Since
the probabilities is needed only along the sample path, we
do not require P̃ , but only P̃N .

An actor-critic algorithm operates in the following way:
the critic observes state and one-step cost from MDP and
uses observed information to update the critic parameters,
then the critic parameters are used to update the policy; the
actor generates the action based on the policy and applies the
action to the MDP. The algorithm stops when the gradient
of ᾱ(θ) is small enough (i.e., θ is locally optimal).

We omit the detail of the actor-critic algorithm, and only
note that it does not depend on the form of RSP µθ, and it is
of the LSTD type, which has shown to be superior to other
approximate dynamic programming methods in terms of the
convergence rate [14]. The detail of this algorithm can be
found in the technical report [16].

C. RSP Design

In this section we describe a suitable randomized policy
for MRP problems that can be obtained from PN and do
not require the transition probabilities. We propose a family
of RSPs that perform a “t steps look-ahead”. This class of
policies consider all possible sequences of actions in t steps
and obtain a probability for each action sequence.

To simplify notation, for a pair of states i, j ∈ S̃P , we
denote i t→ j if there is a positive probability of reaching j
from i in t step. This can be quickly verified given P̃NP . At
state i ∈ S̃P , we denote an action sequence from i with t
steps look-ahead as e = u1u2 . . . ut, where uk ∈ ÃP(j) for
some j such that i k→ j, for all k = 1, . . . t. We denote the set
of all action sequences from state i as E(i). Given e ∈ E(i),
we denote (with a slight abuse of notation) P̃NP (i, e, j) = 1
if there is a positive probability of reaching j from i with
the action sequence e. This can also be recursively obtained
given P̃NP (i, u, ·).

For each pair of states i, j ∈ S̃P , we define d(i, j) as the
minimum number of steps from i to reach j under any policy
(this can be obtained quickly from P̃NP with a simple graph
search). We denote j ∈ N(i) if and only if d(i, j) ≤ rN ,
where rN is a fixed integer given apriori. If j ∈ N(i), then
we say i is in the neighborhood of j, and rN represents the
radius of the neighborhood around each state.

For each state i ∈ S̃P , We define the safety score
safe(i) as the ratio of the neighboring states not in S̄?P over
all neighboring states of i, where S̄?P is the set of states
with 0 probability of reaching S?P under any policy. More
specifically:

safe(i) :=

∑
j∈N(i) I(j)

|N(i)|
, (2)
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where I(i) is an indicator function such that I(i) = 1 if and
only if i ∈ S̃P\S̄?P and I(i) = 0 if otherwise. A higher safety
score for the current state implies that it is less likely to reach
S̄?P in the near future. Furthermore, we define the progress
score of a state i ∈ S̃P as prog(i) := minj∈S?

P
d(i, j), which

is the minimum number of steps from i to any state in S?P .
We can now present the definition of our RSP. Let θ :=

[θ1, θ2]T. We define:

a (θ, i, e) = exp
(
θ1

∑
j∈N(i)

safe(j)P̃NP (i, e, j)

+θ2

∑
j∈N(i)

(prog (j)− prog (i)) P̃NP (i, e, j)
)
, (3)

where exp is the exponential function. Note that a(θ, i, e) is
the combination of the expected safety score of the next state
applying the action sequence e, and the expected improved
progress score from the current state applying e, weighted by
θ1 and θ2. We assign the probability of choosing the action
sequence e at i proportional to the combined score a(θ, i, e).
Hence, the probability of choosing action sequence e at state
i is:

µ̃θ (i, e) =
a (θ, i, e)∑

e∈E(i) a (θ, i, e)
. (4)

Note that, for any chosen action sequence e, only the first
action is applied. Hence, at stat i, the probability of choosing
action u ∈ ÃP(i) can be derived from (4):

µθ (i, u) =
∑

{e∈E(i) | e=uu2...ut}

µ̃θ(i, e), (5)

which completes the definition of the RSP.

D. Overall Algorithm

We now connect all the pieces together and present the
overall algorithm giving a solution to Prob. II.3.

Algorithm 1 Overall algorithm
Input: A labeled NTS MN = (Q, q0, U,A, P

N ,Π, h) modeling
a robot in a partitioned environment, LTL formula φ over Π,
and a simulator to compute P (q, u, ·) given any state-action
pair (q, u)

1: Translate the LTL formula φ to a DRA Rφ
2: Generate the product NTS PN =MN ×Rφ
3: Find the union of all AMECs S?P associated with PN

4: Convert from an MRP to an SSP and generate P̃N

5: Obtained the RSP µθ from PN

6: Execute the actor-critic algorithm with P̃N until gradient
||∇ᾱ(θ?)|| ≤ ε for a θ? and a given ε

Output: RSP µθ and θ? locally maximizing the probability of
satisfying φ with respect to θ up to a threshold ε

Proposition III.4. Alg. 1 returns in finite time with θ? locally
maximizing the probability of the RSP µθ satisfying the LTL
formula φ.

Proof. See [16].

IV. HARDWARE-IN-THE-LOOP SIMULATION

In this section, we test the algorithms proposed in this
paper through hardware-in-the-loop simulation for the RIDE
environment (see www.hyness.bu.edu/ride for more
information). The transition probabilities are computed by
an accurate simulator of RIDE as needed. We then compare
the exact solution with the approximate solution obtained by
the proposed approach.

A. Environment
We consider an environment whose topology is shown

in Fig. 2a. This environment is made of square blocks
forming 164 corridors and 84 intersections. The corridors
(C1, C2, . . . , C164) shown as white regions in Fig. 2a are of
three different lengths, one-, two-, and three-unit lengths.
The three-unit corridors are used to build corners in the
environment. The intersections (I1, I2, . . . , I84) are of two
types, three-way and four-way, and are shown as grey blocks
in Fig. 2a. The black regions in this figure represent the
walls of the environment. Note that there is always a corridor
between two intersections.

(a) (b)

Fig. 2. Fig. 3a:Schematic representation of the environment with 84
intersections and 164 corridors. The black blocks represent walls, and the
grey and white regions are intersection and corridors, respectively. There
are five properties of interest in the regions {VD,RD,Up,Ri,Un}. Fig. 3b:
Simulation snapshots. The white disk represents the robot and the different
circles around it indicate different regions. (a) The robot centers itself on a
stretch of corridor by using FollowRoad; (b) The robot applies GoRight
in an intersection; (c) The robot applies GoLeft.

There are five properties of interest (observations) associ-
ated with the regions of the environment. These properties
are: VD = ValuableData (regions containing valuable data to
be collected), RD = RegularData (regions containing regular
data to be collected), Up = Upload (regions where data can
be uploaded), Ri = Risky (regions that could pose a threat to
the robot), and Un = Unsafe (unsafe regions).

B. Construction of the MDP model
The robot is equipped with a set of feedback control

primitives (actions) - FollowRoad, GoRight, GoLeft, and
GoStraight. The controller FollowRoad is only available
(enabled) at the corridors. At four-way intersections, con-
trollers are GoRight, GoLeft, and GoStraight. At three-
way intersections, depending on the shape of the intersection,
two of the four controllers are available. The resulting motion
may be different than intended due to the presence of noise in
the actuators and sensors, leading to probabilistic transitions.
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Fig. 3. The optimal solution (the maximal probability of satisfying φ)
is shown with the dashed line, and the solid line represents the satisfying
probability for the RSP as a function of θk at each iteration k.

To create an MDP model of the robot in RIDE, we define
each state of the MDP as a collection of two adjacent regions
(a corridor and an intersection). For instance the pairs C1-I2
and I3-C4 are two states of the MDP. Through this pairing
of regions, it was shown that the Markov property (i.e., the
result of an action at a state depends only on the current state)
can be achieved [11]. The resulting MDP has 608 states. The
set of actions available at a state is the set of controllers
available at the last region corresponding to the state. For
example, when in state C1-I2 only those actions from region
I2 are allowed. Each state of the MDP whose second region
satisfies an observation in Π is mapped to that observation.

To obtain transition probabilities, we use an accurate
simulator (see Fig. 2b) incorporating the motion and sensing
of an iRobot Create platform with a Hokoyu URG-04LX
laser range finder, APSX RW-210 RFID reader, and an
MSI Wind U100-420US netbook. Specifically, it emulates
experimentally measured response times, sensing and control
errors, noise levels and distributions in the laser scanner
readings. We perform a total of 1000 simulations to obtain
transition probabilities for each action-state pair of the MDP.

C. Task specification and results

We consider the following mission task: Reach a location
with ValuableData (VD) or RegularData (RD), and then
reach Upload (Up). Do not reach Risky (Ri) regions unless
eventually reach a location with ValuableData (VD). Always
avoid Unsafe (Un) regions until Upload (Up) is reached (and
mission completed). This task specification can be translated
to the LTL formula:

φ := FUp ∧ (¬UnUUp) ∧ G (Ri −→ FVD)

∧G (VD ∨ RD −→ XFUp) (6)

The initial position of the robot is shown as a blue
circle in Fig. 2a. The size of the DRA is 17 which results
in the product MDP with 10336 states. By applying both
methods of linear programming (exact solution) and Alg. 1
(approximate solution), we found the maximal probability of
satisfying the specification were 92% and 75%, respectively.
The graph of the convergence of the actor-critic solution
is shown in Fig. 3. The parameters for this examples are:
λ = 0.9, and the initial θ0 = [5,−0.5]T. The look-ahead

window t for the RSP is 2. Since the transition probabilities
are computed only along the sample path. When Alg. 1
is completed (at iteration 1100), at most 1100 transition
probabilities were computed. In comparison, in order to solve
the probability exactly, around 30000 transition probabilities
of state-action pairs must be computed.

V. CONCLUSIONS

We presented a framework that brings together an ap-
proximate dynamic programming computational method of
the actor critic type, with formal control synthesis for
robots modeled as Markov Decision Processes (MDPs) from
temporal logic specifications. We show that this approach
is particularly suitable for problems where the transition
probabilities are difficult or computationally expensive to
compute. We show that this approach effectively finds an
approximate optimal policy within a class of randomized
stationary polices. Future directions include extending this
result to multi-robot teams, providing an insight on how to
choose an appropriate look-ahead window when designing
the RSP, and applying the result to more realistic test-cases.
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