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Abstract— The deployment of autonomous systems that op-
erate in unstructured environments necessitates algorithms to
verify their safety. This can be challenging due to, e.g., black-
box components in the control software, or undermodelled
dynamics that prevent model-based verification. We present a
novel verification framework for an unknown dynamical system
from a given set of noisy observations of the dynamics. Using
Gaussian processes trained on this data set, the framework
abstracts the system as an uncertain Markov process with
discrete states defined over the safe set. The transition bounds
of the uncertain process are derived from the probabilistic
error bounds between the regression and underlying system.
An existing approach for verifying safety properties over
uncertain Markov processes then generates safety guarantees.
We demonstrate the versatility of the framework on several
examples, including switched and nonlinear systems.

I. INTRODUCTION
The ability to provide formal guarantees is essential for

safety-critical systems. Without assurances, innovations such
as self-driving cars, medical robotics, and autonomous aerial
vehicles will remain bounded to narrow domains. To address
this need, formal verification offers powerful frameworks
with rigorous analysis techniques [1], [2]. They provide
formal guarantees with respect to the system model. In many
applications, however, an accurate model of an autonomous
system is either unavailable due to, e.g., the use of a black-box
controller, or if available, it is not in a closed form that can
be used for formal verification. This work aims to develop
a verification method that can provide safety guarantees for
systems with unknown dynamics.

Formal verification of control systems has been widely stud-
ied, e.g., [3]–[9]. These methods are typically based on model
checking algorithms [1], [2] which take a simple discrete,
finite model and return a yes or no as to whether the model
satisfies a given specification. To bridge the gap between
continuous and discrete domains, those works construct an
abstraction, a finite representation of the control system with
a simulation relation [10]. This abstraction is in the form of
a finite graph if the underlying system is deterministic or a
finite Markov process if the underlying system is stochastic.
Even though they admit strong guarantees, these methods are
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model-based and require full knowledge of the system model.
Hence, they cannot be employed for analysis of systems with
unknown dynamics.

Recent work has focused on data-driven analysis of
dynamical systems, e.g., [11]–[14], which assume partial
knowledge about the system and provide some performance
assurances. The work in [12] uses techniques based on
Bayesian inference to compute the confidence over a prop-
erty of interest for partly unknown linear systems. Work
[13] introduces an algorithm based on chance-constrained
optimization to provide probabilistic stability guarantees for
an unknown switched linear system from a finite number of
observations of trajectories. Despite their strengths, those data-
driven methods assume the unknown model is linear. Work
[14] relaxes this assumption and considers safety assessment
of a dynamical system whose model is fully unknown. Their
method is based on approximation of the dynamics using a
piecewise-polynomial function and safety assessment through
barrier certificates. This safety analysis is sound with respect
to the polynomial function but cannot be extended to the
underlying system in a straightforward manner.

A powerful approach to approximate an unknown function
is Gaussian process (GP) regression [15]. GP regression is
a Bayesian machine-learning framework, which has been
receiving special attention in safety-critical applications due
to its ability to capture the uncertainty in the learning
process [16], [17]. Recent works [18]–[21] successfully derive
theoretical bounds on the distance between the regressed GP
and the underlying (unknown) system. These results have led
to the increased use of GPs in safe learning frameworks, e.g.,
[22]–[25]. In [22], [23], the proposed algorithms learn the
unknown dynamics as a GP model, which is then used within
a reinforcement learning algorithm to learn a reachability
policy under safety constraints. Similarly, [24] introduces a
method of learning a policy safely based on GP modeling with
stability guarantees. Nevertheless, it is unclear whether those
algorithms designed for learning policies can be employed
for formal verification purposes.

In this work, we focus on the safety verification of
control systems with unknown dynamics via GP regression.
We introduce an algorithm that, given a set of noisy data,
generates formal probabilistic guarantees for the unknown
system to remain in a given safe set for every initial state.
These guarantees are with respect to an arbitrary control policy.
The algorithm uses a discretization of the safe set and GP
regression to construct a finite abstraction with probabilistic
bounds. This abstraction is in the form of an uncertain Markov
model that captures all possible behaviors of the unknown
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system through a derivation for the error bounds between
the regression and underlying system. Then, the algorithm
determines the safety probability bounds for the unknown
system by performing safety verification on the abstraction.

The main contribution of this work is a framework for
formal verification of unknown dynamical systems. This is
the first abstraction-based verification technique that does not
assume known dynamics to the best of our knowledge. This
work lays the theoretical foundation for formal reasoning
about unknown systems against complex specifications given,
e.g., as temporal logic formulas [2]. Another contribution
of the paper is a derivation of probability bounds on the
transition from a point to a region for the unknown dynamics.
These bounds are general and hence can be applied to systems
with various levels of knowledge about their dynamics.

II. PROBLEM FORMULATION

Consider a controlled dynamical system with noisy obser-
vation (measurement) in the form of

x(k + 1) = f(x(k), u(k)),
y(k) = x(k) + v(k, u(k � 1)),

(1)

where

x(k) 2 Rn
, u(k) 2 U , y(k) 2 Rn

, v(k, u(k�1)) ⇠ Du(k�1),

f : Rn
⇥ U ! Rn is a possibly non-linear and unknown

function that represents the dynamics of the system, U =
{a1, . . . , a|U|} is a finite set of actions or control laws, and
for each a 2 U , v(k, a) is a noise term sampled from
distribution Da. We assume the noise v is an arbitrary zero-
mean martingale difference sequence, i.e., for each k > 0
and k

0
< k

E
⇥
v(k, u(k)) | v(k0, u(k0))

⇤
= 0.

We further assume that kvk < � almost surely for some � > 0
at each step k and that the noise on the various components
of x is independent, i.e., component vi is independent of vj

for i, j 2 {1, ..., n}.
Taking f as completely unknown may lead to an ill-posed

problem. We employ the following standard assumption [18],
which guarantees f is a well-behaved function that can be
approximated using GP regression.

Assumption 1. For a compact set K ⇢ Rn, let  :
Rn

⇥ Rn
! R>0 be a given kernel and H(K) the

reproducing kernel Hilbert space (RKHS) of functions over K
corresponding to  with norm k·k [18]. Then, for each a 2 U

and i 2 {1, ..., n}, fi(·, a) 2 H(K) and for a constant
Bi > 0, kfi(·, a)k  Bi, where fi is the i-th component of
f .

Assumption 1 limits the class of functions that can be
considered in Process (1) [18]. The class of functions strictly
depends on the kernel under consideration. A universal kernel,
such as the widely-used squared exponential kernel, has the
property that H(K) is a set which is dense in C(K) – the
set of continuous functions over K. That is, every continuous

function over K can be approximated arbitrarily well by
members of H(K) [26].

Let !x(k) = x0
u0
�! x1

u1
�! . . .

uk�1
���! xk, where

x1, . . . , xk 2 Rn, be a trajectory of Process (1) up to time
k with the observation (measurement) trajectory !y(k) =
y0y1 . . . yk. Then, a control strategy ⇡x is a measurable
function that selects an action (control law) at time k for the
system given the observation trajectory up to that time, i.e.,
⇡x(!y(k)) 2 U . Note that v is a stochastic process. As a
consequence, ⇡x and x are stochastic processes.

A. Problem
The focus of this paper is the safety analysis of Process (1)

from a set of samples, each in the form of (x, u, y), where
y is an observation of Process (1) with state x and input
u. Note that this analysis needs to be probabilistic due to
the reasons stated above and the partial knowledge (finite
noisy samples) of Process (1). The focus is specifically on
the verification problem, where the goal is to check if a
given safety probability threshold is guaranteed. Therefore,
the problem is centered on computing the probability range
that x(k) remains safe for a given (possibly unbounded) time
horizon under all possible strategies. This problem is formally
defined below.

Problem 1. Let D = {(xi, ui, yi) | i 2 {1, ..., nD}} be a
set of nD samples of Process (1). Then, for a compact safe
set Xsafe ⇢ Rn, a time-horizon T 2 N [ {1}, and every
x 2 Xsafe, compute the bounds of safety probability Psafe(x)
defined by

pmin(x)  min
⇡x

Pr(8k 2 [0, T ], !x(k) 2 Xsafe |

x(0) = x,⇡x,D),

pmax(x) � max
⇡x

Pr(8k 2 [0, T ], !x(k) 2 Xsafe |

x(0) = x,⇡x,D).

That is, Psafe(x) 2 [ pmin(x), pmax(x)] for all possible
strategies.

B. Approach
Our approach to Problem 1 is through a discrete abstraction

of Process (1) in a form of an uncertain Markov decision
process. A crucial part of the construction of this abstraction
is the derivation of the uncertainty bounds for the transition
probability of x(k) to region q

0
⇢ Rn given that x(k � 1) 2

q ⇢ Rn. Section IV shows how these bounds can be computed
by incorporating the uncertainty from the GP learning process.
Intuitively, the regressed GP may not accurately approximate
the posterior of Process (1) since the observation noise v is
not Gaussian, i.e., v is bounded and the fact that only a finite
amount of data is available. A correction term that captures
this discrepancy is required. Section V proves the correctness
of the proposed method.

III. PRELIMINARIES
Our approach is based on GP regression and Markov

processes, which are formally defined in this section.



A. Gaussian Process Regression
Gaussian Process (GP) regression is a non-parametric

Bayesian machine learning method [15]. For an unknown
function f : Rn

! R, the basic assumption of GP regression is
that f is a sample from a GP with zero mean1 and covariance
 : Rn

⇥Rn
! R>0. GP regression is often used when only

noisy observations of f are available in the form y = f(x)+v,
where v is assumed to be normally distributed with variance
�
2. Note that here y, v 2 R are different from y, v 2 Rn.
Consider a data set of noisy samples D = {(xi, yi), i 2

{1, . . . , nD}}. Let X and Y be ordered vectors with all
points in D such that Xi = xi and Yi = yi. Further,
call K(X,X) the matrix with Ki,j(Xi, Xj) = (xi, xj),
K(x, X) the vector such that Ki(x, X) = (x, Xi), and
K(X, x) defined accordingly. Assuming the noise is i.i.d.,
the predictive distribution of f at a test point x is given by
the conditional distribution of f , which is Gaussian and with
mean µD and variance �

2
D given by

µD(x) = K(x, X)
�
K(X,X) + �InD

��1
Y

�
2
D(x) = (x, x)�

K(x, X)
�
K(X,X) + �InD

��1
K(X, x),

where InD is the identity matrix of size nD ⇥ nD and � is
a free parameter (often taken to be �

2 when f is distributed
according to the posterior).

In our setting, we do not assume that f is sampled from
a GP and noise v is not Gaussian, so the assumptions for
GP regression are not satisfied. Nevertheless, Assumption 1
permits using GP regression even in our scenario. In particular,
the following Lemma provides a bound on the distance
between µD and f so long Assumption 1 holds. This is
an important result for safety verification, where the distance
between the regression and the true system needs to be
considered.

Lemma 1 ([20], Theorem 2). Let K be a compact set,
� 2 (0, 1), ↵D the maximum information gain parameter
associated with  and data set D training points, and B > 0
such that kfk  B. Assume that |v| < � almost surely
and µD and �D are found with � = 1 + 2/nD. Define
� = (�/

p
�)(B + �

p
2(↵D + 1 + log 1/�)). Then, it holds

that

Pr
�
8x 2 K, |µD(x)� f(x)|  ��D(x)

�
� 1� �.

Lemma 1 computes a probabilistic bound between the
regressed GP and the underlying unknown function and takes
into account the modelling errors in running GP regression
with observation noise with the parameter � and scaling factor
(�/

p
�). The constraint on kfk implies f is Lf -Lipschitz

continuous with L
2
f / B [24]. The information gain term ↵

can be upper bounded for certain kernels as shown in [18].

B. Uncertain Markov Processes
A bounded-parameter [27] or interval [28] Markov de-

cision processes (IMDP) is a generalization of the Markov

1Extensions with non-zero mean are a trivial generalization [15]

decision process that allows interval-valued transition proba-
bilities. An IMDP is defined as follows.

Definition 1 (IMDP). An interval Markov decision process
(IMDP) is a tuple I = (Q,A, P̌ , P̂ ), where

• Q is a finite set of states,
• A is a finite set of actions where A(q) denotes the set

of actions available at state q 2 Q,
• P̌ : Q⇥A⇥Q ! [0, 1] is a function, where P̌ (q, a, q0)

defines the lower bound of the transition probability
from state q to state q

0 under action a 2 A(q),
• P̂ : Q⇥A⇥Q ! [0, 1] is a function, where P̂ (q, a, q0)

defines the upper bound of the transition probability
from state q to state q

0 under action a 2 A(q).

For all q, q0 2 Q and a 2 A(q), it holds that P̌ (q, a, q0) 
P̂ (q, a, q0) and

X

q02Q

P̌ (q, a, q0)  1 

X

q02Q

P̂ (q, a, q0).

A path ! of an IMDP is a sequence of states ! = q0
a0
�!

q1
a1
�! q2

a2
�! . . . such that ai 2 A(qi) and P̂ (qi, ai, qi+1) >

0 for all i 2 N. We denote the last state of a finite path !
fin

by last(!fin) and the set of all finite and infinite paths by
Pathsfin and Paths , respectively.

Let D(Q) denote the set of discrete probability distributions
over Q. Given q 2 Q and a 2 A(q), we call �a

q
2 D(Q) a

feasible distribution reachable from q by a if

P̌ (q, a, q0)  �
a

q
(q0)  P̂ (q, a, q0)

for each state q
0
2 Q. We denote the set of all feasible

distributions for state q and action a by �a

q
.

A strategy defines a choice of action at each state of the
IMDP, and an adversary is a function that chooses a feasible
distribution.

Definition 2 (Strategy). A strategy ⇡ of an IMDP model I is
a function ⇡ : Pathsfin ! A that maps a finite path !

fin of
I onto an action in A.

Definition 3 (Adversary). Given an IMDP I, an adversary
is a function � : Pathsfin ⇥A ! D(Q) that, for each finite
path !

fin
2 Pathsfin and action a 2 A(last(!fin)), assigns

a feasible distribution �(!fin
, a) 2 �a

last(!fin).

Given a strategy ⇡ and an adversary �, a Markov chain
is composed from an IMDP. This Markov chain defines a
probability measure over the paths of the IMDP [8].

IV. ABSTRACTION
In order to solve Problem 1, we abstract Process (1) as an

IMDP I = (Q,A, P̌ , P̂ ) as detailed below.

A. States & Actions
First, we partition the compact safe set Xsafe into

a set of cells (regions) that are non-overlapping. Let
Qsafe = {q1, ..., q|Qsafe|} be the resulting set of cells. Then,
[q2Qsafeq = Xsafe, and

q \ q
0 = ;, 8q, q

0
2 Qsafe, and q 6= q

0
.



Each region is associated to a state of IMDP I . With an abuse
of notation, q denotes both the region, i.e., q ⇢ Xsafe, as well
as its corresponding IMDP state, i.e, q 2 Q. From the context,
the correct interpretation of q should be clear. Furthermore,
let qu denote the unsafe set Rn

\Xsafe. Then, the set of states
of I is defined as

Q = Qsafe [ {qu}.

The set of actions A of I is given by the set of actions in
U , and all actions are allowed to be available at each state
of I, i.e., A(q) = A for all q 2 Q.

B. Transition Probability Bounds
In order to account for the probabilistic behavior of Process

(1), we define the following conditions for the transition
probability bounds of I:

P̌ (q, a, q0)  min
x2q

Pr(x(k) 2 q
0
| x(k � 1) = x,

u(k � 1) = a,D), (2)

P̂ (q, a, q0) � max
x2q

Pr(x(k) 2 q
0
| x(k � 1) = x,

u(k � 1) = a,D), (3)

for all q, q0 2 Q. Notice that even though the action is fixed
in (2) and (3), a probabilistic statement is necessary because
f is unknown and the samples in D are noisy. Conditions
(2) and (3) guarantee that the full probabilistic behavior of
Process (1) is accounted for in the abstraction as shown in
Section V. In order to compute the bounds that satisfy these
conditions, we partition the set of samples D according to
actions a 2 U , i.e., D = [a2UDa, where

Da = {(xi, a, yi) | (xi, a, yi) 2 D}.

GP regression on Da for each a results in a Gaussian
posterior distribution characterized by mean µ

a

D and diagonal
covariance matrix ⌃a

D. Recall that, even though f is unknown
and v is not Gaussian, Lemma 1 allows one to characterize
the distance between the posterior mean µ

a

D and f(·, a).
1) Transitions to Safe States: For all the safe states

q, q
0
2 Qsafe, the transition probability bounds in (2) and

(3) are given by Proposition 1. In order to state this result,
we introduce the notions of reduction and enlargement of a
compact set.

For a scalar ✏ > 0 and a compact set q ⇢ Rn, let q ⇢ q

be a subset of q such that the distance between each of its
points to the boundary of q is at least ✏. Moreover, let q be
such that q ⇢ q and q contains all the points that are within
a ✏ margin from the boundary of q. Sets q and q are the
✏-reduced and ✏-enlarged versions of q, respectively. We are
now ready to state the following result:

Proposition 1. Let q, q0 ⇢ Rn be compact sets. For ✏ > 0,
define the enlarged and reduced sets

q
0 = {x 2 Rn

| 9x
0
2 q

0
s.t. kx� x

0
k1  ✏}

and

q
0 = {x 2 q

0
| 8x

0
2 @q

0
, kx� x

0
k1 > ✏},

where @q
0 is the boundary of q0. Then, for a given action

a 2 U , it holds that

min
x2q

Pr(x(k) 2 q
0
| x(k � 1) = x, u(k � 1) = a,D) �

min
x2q

⇣
1q0(µ

a

D(x))

nY

i=1

Pr(8x0
2 q, |fi(x

0
, a)� µ

a

i,D(x
0)|  ✏ | D)

�
,

and

max
x2q

Pr(x(k) 2 q
0
| x(k � 1) = x, u(k � 1) = a,D) 

max
x2q

⇣
1�

nY

i=1

Pr
�
8x

0
2 q, |fi(x

0
, a)� µ

a

i,D(x
0)|  ✏ |

D
��
1� 1q0(µ

a

D(x))
�⌘

,

where µ
a

i,D is the i-th component of vector µa

D, and 1H(h) is
the indicator function which is 1 if h 2 H and 0 otherwise.

Proposition 1 guarantees that upper and lower bounds of
Pr(x(k) 2 q

0
| x(k�1) 2 q, u(k�1) = a,D) can be derived

by checking if the posterior mean is within a reduced (or
enlarged) version of q0 and computing a uniform error bound
on the distance between the posterior mean of the GP learnt
via GP regression and f (the underlying dynamics in Process
(1)). Such a bound can be computed by employing Lemma 1.
Proposition 1 and Lemma 1 are combined in the following
theorem.

Theorem 1. Let q, q0, q0, q0 be as defined in Proposition 1.
For i 2 {1, ..., n}, consider Bi > 0 such that for a given
a 2 U , kf(·, a)k  Bi. Define �i as in Lemma 1 and
for � 2 (0, 1) select ✏ = maxi2{1,...,n} �

1
2
i
(⌃a,(i,i)

D )
1
2 , where

⌃a,(i,i)
D is the i-th element of the diagonal of ⌃a

D. Then, it
holds that

min
x2q

Pr(x(k) 2 q
0
| x(k � 1) = x, u(k � 1) = a,D) �

min
x2q

1q0(µ
a

D(x))(1� �)n,

and

max
x2q

Pr(x(k) 2 q
0
| x(k � 1) = x, u(k � 1) = a,D) 

max
x2q

⇣
1� (1� �)n(1� 1q0(µ

a

D(x)))
⌘
.

Note that Theorem 1 holds for every choice of constant
�, and hence of ✏. As discussed in Section VI, this constant
should be selected in order to maximize the tightness of the
bound. In fact, ✏ controls both the tightness of the bound
between the posterior mean and the underlying system and
how much q

0 is reduced and enlarged.

Remark 1. Proposition 1 is general; it does not make use of
Assumption 1. It just assumes the existence of a bound between
the posterior mean and the unknown function. Therefore, it
can be applied to other settings where Assumption 1 is not
satisfied. For instance, if function f is a sample from a



GP prior with Gaussian observation noise, our framework
can still be used in combination with existing error bounds
developed for this scenario, such as those in [21].

2) Transitions to Unsafe State: We obtain upper and lower
bounds for the transitions to the unsafe region qu as a corollary
of Theorem 1. That is, for every q 2 Qsafe,

P̌ (q, a,qu) = 1�max
x2q

Pr(x(k) 2 Xsafe |

x(k � 1) = x, u(k � 1) = a,D),

P̂ (q, a,qu) = 1�min
x2q

Pr(x(k) 2 Xsafe |

x(k � 1) = x, u(k � 1) = a,D).

Both of these terms can be computed by employing Theorem
1. To complete the construction of abstraction I , we make qu

absorbing, i.e., P̌ (qu, a, qu) = P̂ (qu, a, qu) = 1 for all a 2 A,
to ensure that I does not count the transitions to Xsafe from
qu of Process (1) as a safe behavior.

V. VERIFICATION
Given the IMDP abstraction I , we are interested in comput-

ing the probabilities of remaining in Qsafe for T 2 N[ {1}

time steps from every q 2 Qsafe. Note that, under strategy
⇡, the safety probability is a range due to the transition
probability intervals of I . The values in this range correspond
to the feasible transition probabilities �

a

q
2 �a

q
at every

state q 2 Q and action a 2 A chosen by ⇡. The choice
of this feasible transition probability is made by adversary
�. Therefore, the minimum safety probability is achieved
when both strategy ⇡ and adversary � are minimizing the
safety probability. Similarly, the maximum safety probability
is given when both ⇡ and � are maximizing.

This optimization problem can be formulated through the
Bellman equation as detailed in [8]. Let p̌

k(q) and p̂
k(q)

denote the minimum and maximum probability of remaining
safe in k time steps starting from state q 2 Q, respectively.
Then, the safety probability bounds for a finite time duration
T can be computed by T recursive evaluations of

p̌
k(q) = min

a2A(q)
min

�a
q 2�a

q

X

q02Q

�
a

q
(q0) p̌k�1(q0) (4)

p̂
k(q) = max

a2A(q)
max
�a
q 2�a

q

X

q02Q

�
a

q
(q0) p̂k�1(q0) (5)

with initial values of p̌0(q) = 1 for q 2 Qsafe and p̌
0(qu) = 0.

In the case of an infinite time horizon T , recursive evaluations
of (4) and (5) need to continue until convergence, which is
guaranteed to occur in finite time [8].

This method of evaluation is similar to value iteration. The
additional step involves first optimizing over the adversaries,
which itself can be performed iteratively via an ordering of
the states in Q according to their values [8]. Once the optimal
adversaries are obtained for all a 2 A(q), an optimization
over the actions is performed to complete the computation
for one time step in (4) and (5). This algorithm computes the
safety probability bounds p̌

T (q) and p̂
T (q) for each q 2 Q.

The complexity of the algorithm is polynomial in the size of
the IMDP I [8].

A. Correctness

The following theorem guarantees that the safety probabil-
ity ranges computed by our framework are sound, i.e., they
give lower and upper bounds for pmin(x) and pmax(x) as
defined in Problem 1.

Theorem 2. Let x 2 Xsafe and q 2 Q such that x 2 q. Then,
it holds that [pmin(x), pmax(x)] ✓

⇥
p̌
T (q), p̂T (q)

⇤
.

VI. CASE STUDIES

We evaluate the performance of our framework in three
case studies. The first case study involves three single-action
linear systems and shows the effect of various choices for
parameter ✏. The second case uses two of the linear systems
to define a switched system with two actions. The final case
considers the safety a nonlinear system. Additional results
can be found in our extended manuscript [29].

In all three case studies, Xsafe is a two-dimensional square
defined by the region [�4, 4] ⇥ [�4, 4]. We performed a
regression of each dynamical system using a pair of Gaussian
processes, one for each output component. The GP prior
used the zero mean and squared-exponential functions. The
training process used one thousand i.i.d. training points with
noise parameter � = 0.01 to optimize the hyperparameters
of the prior functions and train the Gaussian processes using
the GaussianProcesses.jl Julia package [30]. We modified an
existing tool to perform the verification over the resulting
IMDP [8].

A. Single-Action Linear Systems

We performed the verification procedure on three linear
systems f(x(k)) = Ai x(k), i 2 {rotation, upper, lower},

Arotation =


0.9 �0.4
0.4 0.5

�
,

Aupper =


0.8 0.5
0 0.5

�
, Alower =


0.5 0
�0.5 0.8

�
.

We discretized the safe set Xsafe into squares with side length
0.25. Figure 1 shows the 10-step safety probability (T = 10)
for each cell using ✏ = 0.12. The legend above the figures
maps the intensity of the shade of each cell to a probability
value between zero and one. The white cells in Figures 1(a),
(c) and (e) correspond to a minimum safety probability of
one. If the system is initialized within one of these cells, then
it is certain to remain in the safe set.

Figures 1(a), (c) and (e) also include cells where the
minimum probability of safety is zero due to flow that leaves
the Xsafe before returning. This does not mean that it is
impossible to stay in the safe set starting at one of these cells,
because the maximum probability of safety may be greater
than zero. The maximum probability is shown in Figures 1(b),
(d) and (f). These results indicate that if the system were
initialized in the cells with a maximum probability of safety
near zero (e.g. the black corners in (b)), it is certain to
leave Xsafe. Cells with a safety probability minimum of zero



(a) pmin for Arotation (b) pmax for Arotation

(c) pmin for Aupper (d) pmax for Aupper

(e) pmin for Alower (f) pmax for Alower

Fig. 1: Minimum and maximum 10-step (T = 10) safety
probability for the linear systems with ✏ = 0.12.

and maximum of one essentially indicate a nondeterministic
transition to a safe or unsafe cell after T steps.

The effect on the verification results of reducing ✏ is shown
in Figure 2 for Arotation. The initial surely-safe areas diminish
as ✏ decreases until the minimum safety probability becomes
zero nearly everywhere. This highlights a trade-off when
choosing ✏. Recall that Proposition 1 depends on enlarging
and reducing the target set. Small ✏ shrinks and enlarges
the sets less, which can be beneficial when calculating the
transition probabilities. Small ✏ also tightens the bound on
the distance between the system and the process. Too small,
and the resulting probabilities become trivial everywhere, i.e.,
a minimum of zero and maximum of one.

B. Switched Linear System

The switched system uses the Aupper and Alower systems
from the previous section, and enables switching between the
two at each time step. The verification used the previous

(a) ✏ = 0.08 (b) ✏ = 0.09

(c) ✏ = 0.10 (d) ✏ = 0.12

Fig. 2: Minimum 2-step safety probability for Arotation for
different values of ✏.

(a) T = 1 step (b) T = 1000 steps

Fig. 3: Minimum probability of safety for a switched system
comprised of the Aupper and Alower systems.

discretization of Xsafe and ✏ = 0.12. Recall that the
verification problem aims to check if this system remains
in the safe set for all possible strategies. With two actions
available to the system, the worst-case result occurs if one
action could drive the system to an “unsafe” region of the
other action. Figure 3 shows the minimum probability of
safety after one and 1000 steps. Due to the tight results of the
component systems, the verification output of the switched
system happens to be the superposition of the individual
verification outputs. Notably, the system is guaranteed to
remain in the safe set after 1000 steps regardless of the
underlying strategy so long it starts in a cell with a minimum
safety probability of one.

C. Nonlinear System
We demonstrate the verification on a nonlinear system

given by

f(x(k)) = [ x1(k)� 0.05 x2(k), x2(k) + 0.1 sin(x1(k)) ]T



(a) True Vector Field

(b) T = 1 step (c) T = 6 steps

Fig. 4: Vector fields and the minimum safety probability for
multiple steps of the nonlinear system.

over a discretization of Xsafe with squares of side length 0.25.
The vector field for the true system is shown in Figure 4(a).
After 1 step, the minimum probability of safety is zero around
parts of the field that flow out of Xsafe shown in Figure 4(b).
However, the non-zero maximum probability of transitioning
to parts of the field that flows out of Xsafe cause the initially-
large set to shrink after successive steps. After 6 steps, safety
is guaranteed if the system starts in regions around the origin.

VII. CONCLUSION
We introduced a novel verification framework that generates

safety guarantees for unknown dynamical systems. The ap-
proach is based on GP regression and an uncertain abstraction
that incorporates probabilistic error bounds between the model
learned from data and the underlying system. This versatile
framework paves the way for generating guarantees for safety-
critical systems that have black-box components.
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