
Specification Revision for Markov Decision Processes
with Optimal Trade-off

M. Lahijanian and M. Kwiatkowska

Abstract— Optimal control policy synthesis for probabilistic
systems from high-level specifications is increasingly often
studied. One major question that is commonly faced, however,
is what to do when the optimal probability of achieving the
specification is not satisfactory? We address this question by
viewing the specification as a soft constraint and present a
synthesis framework for MDPs that encodes and automates
specification revision in a trade-off for higher probability. The
method uses co-safe LTL as the specification language and
quantifies the revisions to the specification according to user-
defined proposition costs. The framework computes a control
policy that optimizes the trade-off between the probability of
satisfaction and the cost of specification revision. The key idea
of the method is a rule for the composition of the MDP, the
automaton representing the specification, and the proposition
costs such that all possible specification revisions along with
their costs and probabilities of satisfaction are captured in
one structure. The problem is then reduced to multi-objective
optimization on an MDP. The power of the method is illustrated
though simulations of a complex robotic scenario.

I. INTRODUCTION

In recent years, there has been an increasing interest in
automatic control generation for dynamical systems from
high-level specifications (e.g., [1]–[7]). The main motivations
for such studies are to eliminate human error and to lift
the role of humans to the highest level of decision making
– specification – by algorithmically constructing provably-
correct control strategies. These approaches have specifically
gained popularity in the fields of robotics, smart buildings,
and systems biology. By the nature of these fields, the
underlying systems include uncertainty and stochasticity, and
hence the goal is to find an optimal strategy that maximizes
the probability of satisfying the specification.

One major challenge that arises in these studies is the
question of what to do if the optimal probability of satisfac-
tion is not good enough? For example, consider the robotic
scenario depicted in Fig. 1, where a home assitive robot
carrying a tray of dishes is tasked to take the dishes to the
kitchen without breaking them and without passing through
the bedroom. Due to the object that is partially blocking
the entrance to the kitchen from the common room, and
robot’s sensor and actuation noise, the chances of entering
the kitchen safely are less than ideal. Now, imagine that
getting the dishes to the kitchen safely is of higher priority to
the user than avoiding the bedroom. With this information,

This work was supported by ERC Advanced Investigators Grant VERI-
WARE and EPSRC Mobile Autonomy Program Grant EP/M019918/1.

The authors are with the Dept. of Computer Science, University of Ox-
ford, UK, E-mail: {morteza.lahijanian,marta.kwiatkowska}
@cs.ox.ac.uk.

M. Lahijanian is the corresponding author.

bedroom

kitchen

robot

common
room

Fig. 1: A home assistive robot carrying a tray of dishes in
the common room with the task of, “take the dishes to the
kitchen by avoiding the bedroom”

then a possible desired behavior for the robot is to deliver
the dishes to the kitchen through the bedroom given that the
trade-off between the gained probability of success and the
violation of the bedroom constraint is acceptable to the user.
Such scenarios are commonly faced in robotics, and, more
generally, in control of probabilistic systems in real world
applications. In this work, we consider this problem from
the specification perspective and investigate the following
question: “how to automatically revise the specification so
that the resulting strategy gives rise to an optimal trade-off
between the probability of success and the degree of violation
to the original specification.”

Many frameworks have been developed for control strat-
egy synthesis from high-level specifications for stochastic
systems [4], [5], [8]–[12]. These works typically use Markov
decision processes (MDPs) as the (abstraction) model for the
underlying systems and employ temporal logics, namely lin-
ear temporal logic (LTL) [13], as the specification language.
In these works, the LTL specifications are viewed as hard
constraints. Therefore, the developed frameworks are only
able to compute a strategy that satisfies the specification
optimally. In other words, by design, they are unable to
suggest ways to improve the probability of success even if
this probability is unsatisfactory.

In recent works, control generation methods that treat
LTL specifications as soft constraints have been introduced
[14]–[19]. These approaches are also referred to as partial
satisfaction or specification revision methods, and their pur-
pose is to enable (deterministic) robot motion planning in
environments, in which the given high-level task is not fully
satisfiable. The framework introduced in [14] allows for a
temporary violation of the specification for simple transition
systems. That method decomposes the specification into frag-
ments and asks the user to prioritize them to generate a desir-
able plan. The works in [16], [17] also tackle the problem of

To appear in the 2016 Proc. IEEE Conf. on Decision and Control

planning for unsatisfiable LTL specifications for a transition
system. These works propose several measures of distance
between Büchi automata representing the specification and
formulate (NP-hard) planning algorithms based on these
measures. All of these works assume that the underlying
system is deterministic, and their extensions to probabilistic
systems are not clear and remain to be investigated

The LTL planning frameworks in [18], [19] introduce three
heuristics based on the notion of graph distance to generate
the “closest” plan for deterministic robotics systems. One
of these measures is adopted by [20] for control policy
generation for MDPs with partially satisfiable LTL specifi-
cations. As discussed in [19], the used measure, however, is
suitable for only a narrow fragment of specifications, namely
coverage, e.g., eventually visit regions A, B, and C in any
order. For other types of specifications, this method of partial
satisfaction generates undesirable behaviors.

Planning with soft constraints has also been studied in
the AI community under the notion of preference-based
planning, e.g., [21]–[23]. These works introduce various
models of reasoning about conditional preferences such as
CP-nets [21]. The most related work from this community
is [23], which introduces a probabilistic preference planning
framework for MDPs. The preferences are expressed in LTL-
style logic. The method reduces the problem to a quadratic
programming problem and solves it by an SMT-solver. The
proposed approach, however, is computationally expensive
and belongs to the complexity class of NP-hard problems.

In previous work [24], a quantitative approach to LTL
control generation for deterministic dynamical systems is
introduced. The approach is based on the idea of skipping of
the edges of the automaton that represents the specification.
This idea leads to the notion of distance to satisfaction over
the behaviors of the system and is derived from user-defined
costs over atomic propositions. The method then automati-
cally computes a series of controls (a plan) that minimizes
the distance to satisfaction of the specification. This method
is generally suitable for all types of specifications.

In this work, we propose an extension of the approach in
[24] to probabilistic systems in the context of specification
revision. Given an MDP, a specification in a fragment of LTL,
and costs over propositions, the proposed scheme generates
a control strategy that optimizes the trade-off between proba-
bility of satisfaction and the expected distance to satisfaction
(degree of violation) to the original specification by consider-
ing all possible (allowed) revisions of the specification. This
is enabled by a slight modification of the idea of skipping
in [24] to quantitative substitution and a novel composition
rule. Technically, the method first constructs a weighted
automaton from the propositional costs and the specification
automaton similar to [24]. The weighted automaton is then
composed with the MDP, resulting in a product MDP. The
composition rule is carefully designed so that the composed
MDP (1) captures all possible specification revisions and (2)
encodes both the distances of the revisions from the original
specification and the probabilities of satisfaction. Finally, by
using multi-objective optimization on the composed MDP, the

Pareto curve that captures all the optimal trade-offs between
distance to satisfaction and probability of satisfaction and
their corresponding strategies are computed.

Summarizing, the main contribution of this paper is
the first LTL control synthesis framework for probabilistic
systems that encodes and automates specification revision
(partial satisfaction) capabilities suitable for all types of
specifications, to the best of our knowledge. The framework
is founded on a novel application of multi-objective verifi-
cation [25], which is enabled by a new composition rule as
discussed above. The power of the approach is illustrated
through a robotic case study.

II. PRELIMINARIES

A. Markov Decision Processes
In this paper, we focus on Markov decision processes

(MDPs) as models of probabilistic systems.
Definition 1 (MDP): An MDP is a tuple M = (Q, q0, A,

P, R, C, ⇧, L) where:
• Q is a finite set of states;
• q0 2 Q is the initial state;
• A is a set of actions;
• P : Q ⇥ A ! Dist(Q) is a transition probability

function, mapping each state-action pair to a probability
distribution over Q denoted by Dist(Q);

• R : Q ⇥ A ! R�0 is a reward function, assigning to
each state-action pair a non-negative reward;

• C : Q ⇥ A ! R�0 is a cost function, assigning to each
state-action pair a non-negative cost;

• ⇧ is a finite set of atomic propositions;
• L : Q ! 2

⇧ is a labeling function that assigns to each
state a set of atomic propositions from ⇧.

The set of available actions in q 2 Q is denoted by A(q) ✓
A. With an abuse of notation, we denote the transition
probability from q to q0 under action a 2 A(q) by P (q, a, q0).

A path of an MDP M is a possible sequence of states from
the initial state through M, i.e., � = �0

a0�! �1
a1�! · · · ,

where �0 = q0, �i 2 Q, ai 2 A(�i), and P (�i, ai, �i+1) > 0

for all i 2 N. A path can be finite or infinite. We denote
the set of all infinite and finite paths of M by Path and
Path⇤, respectively. If � 2 Path⇤, last(�) denotes the final
state of �. We define the observation trace of path � to be
w�

= L(�0)L(�1)
Example 1: Consider the robotic scenario depicted in Fig.

1. An MDP M1 representation of it is shown in Fig. 2.
States q0, q1, q2 represent robot safely navigating in common
room, kitchen, and bedroom, respectively, and q3 represents
a crash that causes the dishes to break in any of the rooms.
The actions and their corresponding transition probabilities,
which indicate how the robot can move in the space, are
shown by edges in this figure. A finite path of M1 is q0q1

with the observation trace of {common room}{kitchen}.
To reason about the behavior of the system represented by

M, we use control policies (also referred to as strategies,
adversaries, or schedulers). A control policy specifies which
action to choose at every state. In general, this choice can
be history dependent and randomized.

q
1

{kitchen}q
0

test

q
0

{common room}

q
2

{bedroom}

q
3

{break}

a0

1.0

a1 0.6

a2

1.0

0.4

a0
1.0

a0

1.0

a0
1.0

Fig. 2: An MDP M1 representation of the robotic scenario
depicted in Fig. 1

Definition 2 (Control Policy): A control policy of an MDP
M is a function � : Path⇤ ! Dist(A) such that �(�, a) = 0

for all a /2 A(last(�)), where, �(�, a) is the probability of
choosing a at state last(�) under �.

We denote the set of all policies of M by ⇤M. Policy
� 2 ⇤M is deterministic if �(�) is a point distribution for
all � 2 Path⇤ (i.e., � chooses an action in A(last(�)) with
probability 1); otherwise, � is randomized. A policy � is
memoryless (stationary) if �(�) depends only on last(�).

B. Syntactically Co-safe LTL

We use syntactically co-safe LTL [26] to write the speci-
fications of the probabilistic system.

Definition 3 (syntax): Let ⇧ = {p1, p2, . . . , pN} be a set
of Boolean atomic propositions. A syntactically co-safe LTL
formula over ⇧ is inductively defined as following:

' := p | ¬p | ' _ ' | ' ^ ' | X' | ' U' | F'

where p 2 ⇧, ¬ (negation), _ (disjunction), and ^ (conjunc-
tion) are Boolean operators, and X (“next”), U (“until”), and
F (“eventually”) are temporal operators.

Definition 4 (Semantics): The semantics of syntactically
co-safe LTL formulas are defined over infinite traces over
2

⇧. Let w = {wi}1i=1 with wi 2 2

⇧ be an infinite trace and
wi

= wiwi+1 . . . be the i-th suffix. w |= ' indicates that w
satisfies formula ' and is recursively defined as following:

• w |= p if p 2 w1;
• w |= ¬p if p /2 w1;
• w |= '1 _ '2 if w |= '1 or w |= '2;
• w |= '1 ^ '2 if w |= '1 and w |= '2;
• w |= X' if w1 |= ';
• w |= '1U'2 if 9k � 0, wk |= '2, & 8i 2 [0, k), wi |= '1;
• w |= F' if 9k � 0, wk |= '.

It is important to note that finite traces are sufficient to
satisfy syntactically co-safe LTL formulas, even though these
formulas have infinite-time semantics. We say that a path of
an MDP satisfies ', if its observation trace satisfies '.

Given a co-safe LTL formula ', a deterministic finite
automaton (DFA) that precisely accepts all the finite traces
that satisfy ' can be constructed [26].

Definition 5 (DFA): A DFA is given by a tuple A =

(Z, ⌃, �, z0, F), where Z is a finite set of states, ⌃ is the
input alphabet, � : Z ⇥ ⌃ ! Z is the transition function,
z0 2 Z is the initial state, and F ✓ Z is the set of accepting
states. The transition function � can be also viewed as a
relation � ✓ Z ⇥ ⌃ ⇥ Z, where every transition is a tuple
(z1, �, z2) 2 � iff z2 = �(z1, �). A finite run of A on a trace

w = w1 · · · wn is a sequence of states µ = µ0µ1 . . . µn,
where µ0 = z0, µi 2 Z, and (µi�1, wi, µi) 2 � for
i = 1, . . . , n. µ is called an accepting run if µn 2 F .

We denote the DFA that is constructed from a formula '
by A'. An input trace w that induces an accepting run µ in
A' is called '-satisfying. To reason quantitatively over the
satisfaction of ', we employ weighted DFA (WDFA).

Definition 6 (WDFA): A weighted DFA (WDFA) is a tuple
A⇢

= (A, ⇢), where A is a DFA, and ⇢ : � ! R assigns
a weight for every transition in �. Consider a trace w =

w1 . . . wn, and let µ = µ0µ1 . . . µn be the run of A⇢ on
w, i.e., (µi�1, wi, µi) 2 � for all i 2 {1, . . . , n}. We define
the weight of w, with an abuse of notation, to be ⇢(w) =

Pn
i=1 ⇢(µi�1, wi, µi). Thus, the weight of a trace is the sum

of weights along the run of A on it. Therefore, a WDFA
defines a function hA⇢

: ⌃

⇤ ! R.

III. PROBLEM FORMULATION

The encompassing goal of this work is a control policy
synthesis scheme for probabilistic systems that enables the
increase of the probability of satisfaction of a high-level spec-
ification at the cost of revision (violation) of the specification.
In other words, we aim to compute the control policies that
give rise to the optimal trade-offs between probabilities of
satisfaction of the revised specifications and the degrees of
violation to the original specification.

We assume that the probabilistic system is in the form
of an MDP, and the specification is given as a co-safe LTL
formula ' over the MDP’s set of atomic propositions ⇧ =

{p1, . . . , pN}. Furthermore, each ordered pair of propositions
(pi, pj) is associated with a non-negative cost, representing
the cost of violation (substitution) of pj by pi. Let c : ⇧ ⇥
⇧ ! R�0, where c(pi, pi) = 0, denote this (possibly partial)
cost function. The intuition is that the user allows revisions
of the specification ' through substitution of its propositions,
and c(pi, pj) captures the degree of user’s willingness on the
substitution of pj by pi.

Instead of actually revising the specification, we evaluate
these costs over the paths of the MDP. We employ c to
measure how far a path is from satisfying ' through allowed
substitutions in its observation trace. Informally, we define
“distance to satisfaction” of a path to ' to be the total cost
of such substitutions (formally defined in Sec. IV). Since
the paths of the MDP are probabilistic, we reason about their
distances to satisfaction in the form of expectation.

Example 2: To illustrate this setting, consider the robotic
scenario depicted in Fig. 1 and its MDP representation
M1 in Fig. 2. The specification is '1 = ((¬break ^
¬bedroom) U (¬break ^ kitchen)). The (simplified) DFA
A'1 is shown in Fig. 3. Clearly, the robot can satisfy '
only by going straight to the kitchen from the common
room. This path corresponds to the MDP path q0q1 and the
trace of {common room}{kitchen} with the probability of
0.6. To achieve this path, the robot has to choose action
a1 in state q0, which also could result in breaking the
dishes with the probability of 0.4. Since the user considers
keeping the dishes safe of much higher priority than going

z
1

z
0

z
2

{common room}
2

⇧

2

⇧

{kitchen} {break}
{bedroom}

Fig. 3: A (simplified) DFA A'1 for '1 = ((¬break ^
¬bedroom) U (¬break ^ kitchen))

to the bedroom or never reaching the kitchen, she assigns
the cost of 1 to the violation of common room by bed-
room (pretending the bedroom is the common room), i.e.,
c1(bedroom, common room) = 1, the cost of 10 for the
violation of kitchen by common room or bedroom (pretend-
ing the common room or the bedroom is the kitchen), i.e.,
c1(common room, kitchen) = c1(bedroom, kitchen) = 10,
and extremely large costs to all the other violations to prevent
them from happening. Now, the robot has several ways to
get to the kitchen. For instance, it can take the path through
the bedroom and endure the cost of 1 in trade-off for the
probability of satisfaction of 1. It could also stay in the
common room and never break the dishes at the cost of 10
for violating kitchen by common room. Given all the trade-
offs, then the user can choose the desired behavior, which is
the former one in this case.

Therefore, we are interested in computing a policy for
the MDP with two objectives: maximizing the probability
of satisfaction and minimizing the expected distance to
satisfaction of ' according to the user’s preference. The
formal statement of the problem is as follows.

Problem 1: Given an MDP M, a co-safe LTL formula
', and a substitution cost function c over pairs of atomic
propositions, synthesize a control policy that maximizes the
probability of satisfaction of ' and minimizes the expected
distance to satisfaction of '.

To approach Problem 1, we first generate a WDFA from
DFA A' and cost function c to capture all possible violations
(revisions) of ' with their corresponding distances to satis-
faction. Then, we compose this WDFA with the MDP through
a specific composition rule that translates the distance to
satisfaction that is defined over traces to the paths of the
product MDP. At the same time, the probability of satisfaction
of ' is also captured by the product MDP through a reward
assignment by the composition rule. Therefore, the problem
is reduced to a two-objective optimization problem over the
product MDP. This optimization problem can be solved by
either methods of value iteration (VI) or linear programming
(LP) in polynomial time [25].

IV. SYNTHESIS FRAMEWORK

In this section, we introduce our control policy synthesis
framework. We note that, for completeness, we first review
the definition of distance to satisfaction from [24] and then
introduce the methodology, which is the main contribution of
the paper, including a new semantics to lift the proposition
substitution costs given by c to the alphabets of A'.

A. Construction of WDFA

Here, we detail the construction of a WDFA from ' and
c to capture the violation costs between two traces. This
WDFA is utilized to measure the distance to satisfaction of
the observation traces of MDP M to '. Recall that, from a
co-safe LTL formula ', a DFA A' that accepts precisely all
satisfying traces of ' can be constructed. The formula ' is
defined over the propositions in ⇧, and hence the alphabets
(also known as letters) of A' are from 2

⇧, i.e., ⌃ = 2

⇧.
Each state of the MDP M is also labeled with an element
of 2

⇧. Therefore, the finite traces from both A' and M are
in (2

⇧
)

⇤. To distinguish between them, we denote a trace
of (a path of) M by wM and a trace of A' by w'. The
set of all traces of M is called the language of M and is
denoted by L(M). Similarly, the language of ' is the set of
all accepting traces of A' and is denoted by L(').

To define the distance to satisfaction of wM to ', we
first need to measure the substitution cost of a letter �M

in wM for another one �' in w'. Recall that each letter
is a set of propositions. Therefore, we can use c, the
propositional substitution cost function, to derive the cost
of letter substitutions. One can think of several ways to do
this. For instance, the work in [24] proposes two semantics
for it. These semantics, however, are specific to the case that
the violation costs of an atomic proposition by all other ones
are equal. In this work, we give more freedom to the user
by allowing different costs for the violation of a proposition
(depending on the substitution proposition). Therefore, we
suggest the following semantics.

Let ⌘ : 2

⇧ ⇥ 2

⇧ ! R be the letter substitution cost
function, where ⌘(�M, �'

) returns the cost of substituting
�M for �'. Also, let l = max(|�M|, |�'|), where |�|
is the number of propositions in �. Then, ⌘(�M, �'

) =

min(↵i,�i)2(�M⇥�')

Pl
i=1 c(↵i, �i) such that

Sl
i=1 ↵i =

�M and
Sl

i=1 �i = �'. Using ⌘, we define the distance
between two traces wM and w' as follows.

DIST(wM, w'
) =

⇢

P|w'|
i=1 ⌘(wM

i , w'
i) if |wM| = |w'|

1 otherwise.

We formally define distance to satisfaction of wM to ' as:

DISTOSAT(wM, ') = min

w'2L(A')
DIST(wM, w'

).

In words, DISTOSAT(wM, ') is the minimum sum of the
costs of the letter substitutions required to turn wM to an
accepting trace of '.

Example 3: Consider again the robotic scenario depicted
in Fig. 1 and the robot behavior of taking the dishes to
the kitchen through the bedroom. The MDP trace of this
behavior is wM

= {common room}{bedroom}{kitchen}.
The closest accepting trace of A' (see Fig. 3) to wM

is w'
= {common room}{common room}{kitchen}. It

is clear that the robot violates (substitutes) letter w'
2 =

{common room} by wM
2 = {bedroom}, whose cost is

1. Therefore, DISTOSAT(wM, ') = 1 for this robot be-
havior. Another possible behavior is for the robot to re-
main in the common room, resulting in the trace wM

=

z
1

z
0

z
2

({bedroom}, {common room}), 1

z
2

({common room}, {kitchen}), 10

({common room}, {common room}), 0
2

⇧ ⇥ 2

⇧

({kitchen}, {kitchen}), 0

({bedroom}, {kitchen}), 10

Fig. 4: WDFA A⇢
'1

constructed from DFA A'1 (Fig. 3) and
proposition substitution cost function c1 in Example 2.

{common room}{common room}. The closest accepting
trace to it is w'

= {common room}{kitchen}. Here, wM
2 =

{common room} is substituted for w'
2 = {kitchen}. The

cost of this substitution is 10; hence, DISTOSAT(wM, ') =

10. Obviously, the former behavior, which has a smaller
distance to satisfaction, is preferred by the user.

To enable algorithmic computation of distance to satisfac-
tion, we construct WDFA A⇢

' from A' = (Z, ⌃, �, z0, F),
where ⌃ = 2

⇧. We define the alphabets of A⇢
' to be

the product of the alphabets of A' to allow substitution.
The cost of the substitutions is then given by the weight
function ⇢. Formally, A⇢

' = (Z, ⌃ ⇥ ⌃, �⇢, z0, F, ⇢), where
for every z 2 Z and letter (�M, �'

) 2 ⌃⇥⌃, the transition
�⇢(z, (�M, �'

)) = �(z, �'
), and the weight of the transition

is given by ⇢(z, (�M, �'
), z0) = ⌘(�M, �'

). Note that, by
design, the accepting input trace w' 2 ⌃

⇤ in A' results in
the same accepting run as the input trace of (wM, w'

) 2
(⌃ ⇥ ⌃)

⇤ in A⇢
', independent of wM. The total weight of

this run in A⇢
', however, depends on wM and is, in fact, the

distance between wM and w'.
The construction of the WDFA is not computationally

expensive. The state space of the WDFA is the same as the
DFA, and its number of edges is polynomial (quadratic in
the worst case) in the number of edges of the DFA. For
implementation purposes, it is not necessary to construct the
WDFA. It is preferred to simulate it on the fly by DFA and ⌘.
Lastly, we suggest the use of a minimized DFA to eliminate
unnecessary computation or simulation of the WDFA.

Example 4: Consider the task DFA A'1 shown in Fig.
3 and the proposition substitution costs c1 in Example 2.
In the first step, we minimize A'1 to reduce unnecessary
computations. The minimized DFA contains only z0, z1,
and their corresponding edges and labels. Then WDFA A⇢

'1

is constructed by pairing each existing label with a letter
that can substitute it as shown in Fig. 4. The cost of this
substitution, then, becomes the weight of the edge enabled
by this newly generated label.

B. Product MDP

To generate a control policy for the MDP M that op-
timizes the trade-off between the maximum probability of
satisfaction of ' and its minimum expected distance to
satisfaction, we compose MDP M with A⇢

', i.e., MP
=

M ⇥ A⇢
'. The resulting structure is an MDP MP

=

(QP , qP0 , AP , PP , RP , CP
), where

• QP
= (Q ⇥ Z) [

�

qPg , qPb

is a set of product states,
where qPg and qPb are the “good” and “bad” terminal

(sink) states;
• qP0 = (q0, z0) is the initial state;
• AP

=

�

AP
(qP) | qP 2 QP is the set of actions;

• PP
: QP ⇥ AP ! Dist(QP

) is a probability dis-
tribution assigning to each transition (qP , aP , qP0

) a
probability in accordance to P ;

• RP
: QP ⇥ AP ! R�0 is a reward function designed

to capture the probability of satisfying ' as explained
below;

• CP
: QP ⇥ AP ! R�0 is a cost function designed to

capture the distance to satisfaction of the paths of M
as explained below.

For simplicity of presentation, we explain the generation
of MP in two steps. In the first step, we focus only on the
subspace (Q ⇥ Z) of MP . In the second step, we complete
the construction of the product by considering the terminal
states qPg and qPb .

1) Pre-Processing Step: A key step to the construction
of MP is the generation of the set of actions AP from the
set of actions A in M. The goal is to capture all possible
substitutions of the labels of the states of M in the structure
of MP . We do this by a unique construction of AP . The
intuition behind it is as follows. Under action a 2 A(q),
state q 2 Q can possibly have several successors with non-
zero probabilities. The label of each successor state, in our
framework, can be substituted by another label at a certain
cost. Therefore, under a, several combinations of successor
labels are possible. For each successor label combination
under a, we define an action in AP (a copy of a).

Formally, let q01, . . . , q
0
k be all the successor states of the

state-action pair (q, a) in M, where q0i 2 Q and P (q, a, q0i) >
0. Moreover, let Ł(q) ✓ 2

⇧ denote the set of all letters
(labels) that can substitute the label of q. Then, we define
the set of available actions at product state qP = (q, z) to be

AP
((q, z)) =

n

(a, l(q01), . . . , l(q
0
k)) | a 2 A(q) and

l(q0i) 2 Ł(q0i) 8i 2 {1, . . . , k}
o

.

Under action aP
= (a, l(q01), . . . , l(q

0
k)) in AP

((q, z)), the
transition probability PP

((q, z), aP , (q0i, z
0
)) =

⇢

P (q, a, q0i) if �⇢(z, (l(q0i), L(q0i))) = z0

0 otherwise.

If �⇢(z, (l(q0i), L(q0i))) = z0, we assign the cost of
¯C((q, z), aP , (q0i, z

0
)) = ⌘(l(q0i), L(q0i)) to this edge. We use

these edge costs to compute the costs of the state-action pairs
CP

(qP , aP
) in the post-processing step.

2) Post-Processing Step: In this step, we complete the
construction of MP such that it can be directly utilized for
a multi-objective optimization computation. We achieve this
by adding two terminal states qPg and qPb to the states space
of MP and taking the necessary steps to turn them into sink
states. These steps are as following:

• Fixing PP : if the sum of the transition probabilities of
state-action pair ((q, z), aP

), where aP 2 AP
((q, z)),

is less than 1, assign the remaining probability mass

to the transition to qPb , i.e., PP
((q, z), aP , qPb) = 1 �

P

qP02QP PP
((q, z), aP , qP0

). This step is particularly
necessary if A⇢

' is constructed from a minimized A'.
• Accepting States to qPg : add an action to every state

(q, z) with z 2 F (accepting state), to enable a transition
to qPg with probability 1, i.e., add aP to AP

((q, z)),
where z is accepting, with PP

((q, z), aP , qPg) = 1.
• Sink States: remove all actions that cause a self-

transition with probability 1 from the states in (Q⇥Z).
Then, turn qPg and qPb into sink states by adding an
action to each with a self-transition probability of 1.

• Rewards: assign a reward of 1 to the state-actions pairs
that have a transition probability 1 to qPg and 0 to all
the other ones. That is, RP

(qP , aP
) = 1 if qP = (q, z)

and z 2 F ; otherwise, RP
(qP , aP

) = 0.
• Costs: assign the cost of 0 to all the edges

that do not have a cost assignment already. Then,
the state-action pair costs become the expecta-
tion of the edge costs ¯C, i.e., CP

(qP , aP
) =

P

qP02QP PP
(qP , aP , qP0

)

¯C(qP , aP , qP0
).

Through this construction, MP captures all possible ways
that the paths of M can satisfy ' with the allowed violations
(substitutions). This product MDP captures the probability of
satisfaction of ' though its reward structure and the distance
to satisfaction through its cost function.

The complexity of the construction of the product MDP
MP is exponential in the number of allowed substitutions.
This is the classic combinatorial problem because all possible
combinations of the allowed substitutions need to be consid-
ered. In the worst case, every letter in ⌃ can substitute every
other letter, and each state-action pair in M has a transition
to all the states in Q with non-zero probability. Then, the
number of actions at each state of MP is |AP

((q, z))| =

|A(q)| |⌃||Q|. Hence, the size of the product MDP in the worst
case is |MP | = |Z| |⌃||Q|P

q2Q |A(q)|.
Example 5: To demonstrate the construction of this prod-

uct MDP, consider MDP M1 and WDFA A⇢
'1

in Fig. 2 and
Fig. 4, respectively. The product MDP MP

1 = M1 ⇥ A⇢
'1

is shown in Fig. 5. The actions in the product are denoted
by aj

i which represents the jth copy of action ai in M1.
The transition probability, reward, and cost of each edge are
indicated by the numbers in the parentheses in the form of
(PP , RP , CP

). The outcome of action aj
i includes no label

substitution if j = 0; hence, the corresponding cost is zero.
For j > 0, substitutions are made with the corresponding
costs. States marked by “good” and “bad” are the terminal
sink states. The edges with no action label are the ones that
are added in the post-processing step.

C. Multi-Objective Optimization
By the construction of the product MDP, Problem 1

reduces to a two-objective optimization problem over MP .
Under a control policy � 2 ⇤MP , the probability of
satisfaction of ' by the paths of MP (see [27]) is

PROBSAT�
MP ['] = E�

MP

⇣

1
X

k=0

RP
(qPk , �(qPk))

⌘

, (1)

(q0, z0)

bad

(q2, z1)

(q0, z1)

(q2, z0) (q1, z1)

good

(1,0,0)

a01
(0.4, 0, 0)

(0.6, 0, 0)

a22

(1, 0, 1)

a12 (1, 0, 10)

a10

(1, 0, 10)

(1, 1, 0)

a00 (1, 0, 0)

(1, 1, 0)

(1, 1, 0)
(1, 0, 0)

Fig. 5: Product MDP MP
1 = M1 ⇥ A⇢

'1
.

0 0.2 0.4 0.6 0.8 1
Probabilisty of Satisfaction

0

0.2

0.4

0.6

0.8

1

D
is

ta
nc

e
To

 S
at

is
fa

ct
io

n

Fig. 6: The Pareto curve computed on MP
1 (Fig. 5) for the

robotic scenario in Fig. 1.

where E�
MP denotes the expectation operator over the paths

of MP under �. Similarly, the expected distance to satisfac-
tion of the paths of MP to ' under � is

DISTOSAT�
MP ['] = E�

MP

⇣

1
X

k=0

CP
(qPk , �(qPk))

⌘

. (2)

Therefore, the multi-objective problem becomes the compu-
tation of a control policy � 2 ⇤MP that maximizes (1) and
minimizes (2). The synthesis of this control policy can be
achieved by solving an LP problem [25].

In this work, we first compute the Pareto curve [28] to
illustrate all the optimal trade-offs between the two objectives
by using VI to solve the problem. Then, by the user’s choice
of a point on the curve, the corresponding control policy can
be obtained by an LP solver. The obtained control policy
is memoryless and generally randomized for MDP MP .
Through a simple projection, it can be converted to a finite-
memory (history dependent) control policy for the MDP M.

Example 6: The Pareto curve obtained for the robotic
scenario in Fig. 1 computed on the product MDP MP

1 (Fig.
5) is shown in Fig. 6. As the curve illustrates, delivering
the dishes safely to the kitchen comes at the trade-off of
violating the bedroom constraint at the cost of 1, whereas
this probability reduces to 0.6 if no violation is allowed.

We note that, at a cost of additional complexity, the
proposed framework can be modified in a straightforward
manner to enable the substitution of single letters by a
sequence of letters (finite trace). This flexibility might be
interesting from the application point of view. For instance,
a robot can substitute an important task only by performing
a sequence of other tasks.

V. CASE STUDY

We evaluated the performance of the proposed control
policy synthesis with specification revision framework on a
robotic scenario in an indoor environment in simulations.
For two different task specifications, each paired with an

atomic substitution cost function, we showed the range of
possible probabilities of satisfaction and their corresponding
distances to satisfaction. In other words, we showed how
the maximum probability of satisfaction can be improved
through specification revision.

We considered the environment shown in Fig. 9d, which
consists of 4 rooms, obstacles, and 5 regions of interest. The
initial position of the robot is shown in blue. The motion of
the robot in this environment was assumed to be given as an
MDP obtained through a discretization of the environment to
a 10 ⇥ 10 grid. Each grid cell was associated to a state of
the MDP. Moreover, the bounding walls of the environment
were represented by a single state of the MDP. Hence, the
robot MDP had a total of 101 states.

The set of atomic propositions were ⇧ =

{Obs, p0, . . . , p5}, and the labeling of the MDP states
was done according to the environment map (see Fig.
9d), where p0 is the label of all the white cells. The state
representing the bounding walls was labeled with {Obs}.
The states corresponding to the cells containing (black)
walls were also labeled with {Obs}. Furthermore, there
were 5 actions available to the robot in each MDP state:
A = {anorth, aeast, asouth, awest, aterminate}. The outcome of
aterminate was a deterministic termination in the current cell
of the robot. The transition probability distribution of the
rest of the actions for any cell is shown in Fig. 7.

The first robot specification was, “Visit regions p2, p4,
and p1, in that order and always avoid obstacles.” This
specification translates to the following co-safe LTL formula:

'2 = ¬Obs U
⇣

p2 ^
�

¬Obs U (p4 ^ (¬Obs U p1))
�

⌘

.

The atomic proposition substitution costs for this specifica-
tion were: c2(p0, p2) = 1, c2(p0, p4) = 2, c2(p0, p1) = 3,
and 1 for all the others. These costs indicate the importance
of visiting p1, p2, and p4 in specification '2, and user’s
willingness to allow them to be ignored by the robot.

The second specification was, “Go to p5 without passing
through p2 and colliding with obstacles,” which translates
to the co-safe LTL formula '3 = (¬p2 ^ ¬Obs) U p5. For
this specification, the user was willing to compromise p5

by allowing the visit of p4, p1, or p3 instead to achieve
a higher probability of satisfaction, according to the costs
c3(p4, p5) = 1, c3(p1, p5) = 5, and c3(p3, p5) = 10. The
user was also willing to ignore p5 at the cost c3(p0, p5) = 20.

We used the proposed framework to compute the Pareto
curve for each of the specifications (see Fig. 8). We also
generated 50 sample paths under four control policies, each
corresponding to a Pareto point. They are shown in Fig.
9. For '2, the probability of satisfaction with no violation
was 0.36, i.e., distance to satisfaction of 0 (see Fig. 9a).
The bottleneck of this task for the robot was to visit p4.
By violating this region, the robot could complete '2 with
the much higher probability of 0.88 (Fig. 9b). The distance
to satisfaction of this behavior was 1.9. At the distance to
satisfaction of 4.0, the robot could complete the task with
the probability of 0.99. The robot behavior under this control

0.2 0.5 0.3

(a) anorth

0.1

0.8

0.1

(b) aeast

0.1 0.8 0.1

(c) asouth

0.2

0.7

0.1

(d) awest

Fig. 7: Transition probability distribution under each action.

0 0.2 0.4 0.6 0.8 1
Probabilisty of Satisfaction

0

5

10

15

D
is

ta
nc

e
To

 S
at

is
fa

ct
io

n

'2

'3

Fig. 8: Pareto curves for '2 and '3

policy was interesting because it chose to terminate when the
robot found itself in a location that had a high probability
of colliding with an obstacle as shown in Fig. 9c. Lastly, at
distance to satisfaction of 5.7, the robot substituted p0 for all
the specified regions to achieve probability of 1 by remaining
in its initial position (Fig. 9d).

The probability of satisfaction of '3 with no violation was
0.52 (Fig. 9e). By allowing the substitution of p4 for p5, the
probability of satisfaction went up to 0.67. As shown in Fig.
9f, the robot chose between p5 and p4 according to its prob-
ability of success from the current region. For the distance
to satisfaction of 4.4 and 9.8, the robot could increase its
probability of success to 0.88 and 0.98, respectively, by going
to p1 and p3 instead of p5 (Figs. 9g and 9h). We verified all
of these probabilities by 1,000 simulations. The results were
within 2% of the theoretical values.

The size of the product MDPs (sum of all state-action pairs)
for '2 and '3 were 3,257 and 3,930, respectively. Their
constructions in MATLAB took 13.0s and 21.3s, respectively.
We used PRISM [29] to compute the Pareto curves and
control policies, each of which took less than 2s. All these
computations were performed on a MACBOOK PRO with a
2.7 GHZ processor and 8 GB of RAM.

VI. CONCLUSION

In this paper, we introduced a computational framework
for specification revision for MDPs. The framework generates
control policies by optimizing the trade-off between the
probability of satisfaction of a high-level specification and its
revision cost. We focused on co-safe LTL as the specification
language and used user-defined substitution costs over the
atomic propositions to define quantitative revisions of the
specification. The efficacy of the method was demonstrated
through simulations of a robotic scenario.

REFERENCES

[1] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s waldo?
sensor-based temporal logic motion planning,” in Int. Conf. on Rob.
and Aut., 2007, pp. 3116–3121.

p0

p1

p2

p3

p4p5

(a) '2-Pareto Pt (0.36, 0)

p0

p1

p2

p3

p4p5

(b) '2-Pareto Pt (0.88, 1.9)

p0

p1

p2

p3

p4p5

(c) '2-Pareto Pt (0.99, 4.0)

p0

p1

p2

p3

p4p5

(d) '2-Pareto Pt (1, 5.7)

p0

p1

p2

p3

p4p5

(e) '3-Pareto Pt (0.52, 0)

p0

p1

p2

p3

p4p5

(f) '3-Pareto Pt (0.67, 0.63)

p0

p1

p2

p3

p4p5

(g) '3-Pareto Pt (0.88, 4.4)

p0

p1

p2

p3

p4p5

(h) '3-Pareto Pt (0.98, 9.8)

Fig. 9: 50 sample paths under control policies corresponding to points on '2 and '3 Pareto curves (Fig. 8). The blue and
yellow colors correspond to the successful and failing paths, respectively.

[2] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[3] M. Rungger, M. Mazo, Jr., and P. Tabuada, “Specification-guided
controller synthesis for linear systems and safe linear-time temporal
logic,” in Hyb. Sys.: Comp. and Cont. ACM, 2013, pp. 333–342.

[4] M. Lahijanian, S. B. Andersson, and C. Belta, “Formal verification
and synthesis for discrete-time stochastic systems,” IEEE Tran. on
Aut. Cont., vol. 60, no. 8, pp. 2031–2045, 2015.

[5] S. Esmaeil Zadeh Soudjani and A. Abate, “Aggregation and control
of populations of thermostatically controlled loads by formal abstrac-
tions,” IEEE Tran. on Cont. Sys. Tech., vol. 23, pp. 975–990, 2015.

[6] M. Kwiatkowska, A. Mereacre, N. Paoletti, and A. Patanè, “Synthe-
sising robust and optimal parameters for cardiac pacemakers using
symbolic and evolutionary computation techniques,” in Int. Workshop
on Hyb. Sys. and Bio., vol. 9271, 2015, pp. 119–140.

[7] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipulation planning with temporal logic specifications,” in Int. Conf.
Rob. and Aut., 2015, pp. 346–352.

[8] M. Lahijanian, S. B. Andersson, and C. Belta, “Control of Markov
decision processes from PCTL specifications,” in Amererican Control
Conf., 2011, pp. 311–316.

[9] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “MDP optimal control
under temporal logic constraints,” in Conf. on Decision and Cont.,
2011, pp. 532–538.

[10] M. Lahijanian, S. B. Andersson, and C. Belta, “Temporal logic motion
planning and control with probabilistic satisfaction guarantees,” IEEE
Tran. on Rob., vol. 28, no. 2, pp. 396–409, 2012.

[11] M. Kwiatkowska and D. Parker, “Automated verification and strategy
synthesis for probabilistic systems,” in Int. Symp. on Aut. Tech. for
Verif. and Analy., vol. 8172, 2013, pp. 5–22.

[12] J. Wang, X. C. Ding, M. Lahijanian, I. C. Paschalidis, and C. Belta,
“Temporal logic motion control using actor-critic methods,” Int. J. of
Rob. Res., vol. 34, no. 10, pp. 1329–1344, 2015.

[13] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT
Press, 1999.

[14] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in Int. Conf. on
Hyb. Sys.: Comp. and Cont. ACM, 2013, pp. 1–10.

[15] M. Guo and D. Dimarogonas, “Distributed plan reconfiguration via
knowledge transfer in multi-agent systems under local ltl specifica-
tions,” in Int. Conf. on Rob. and Aut., 2014, pp. 4304–4309.

[16] K. Kim and G. Fainekos, “Minimal specification revision for weighted
transition systems,” in Int. Conf. on Rob. Aut., 2013, pp. 4068–4074.

[17] ——, “Revision of specification automata under quantitative prefer-
ences,” in Int. Conf. on Rob. Aut., 2014, pp. 5339–5344.

[18] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and
M. Y. Vardi, “Iterative temporal motion planning for hybrid systems
in partially unknown environments,” in Int. Conf. on Hyb. Sys.: Comp.
and Cont. ACM, 2013, pp. 353–362.

[19] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Tran. on Rob.,
vol. 32, no. 3, pp. 538–599, 2016.

[20] B. Lacerda, D. Parker, and N. Hawes, “Optimal policy generation for
partially satisfiable co-safe LTL specifications,” in Int. Joint Conf. on
Artif. Intel., 2015, pp. 1587–1593.

[21] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole,
“CP-nets: A tool for representing and reasoning with conditional
ceteris paribus preference statements,” J. Artif. Intell. Res., vol. 21,
pp. 135–191, 2004.

[22] J. A. Baier, C. Fritz, M. Bienvenu, and S. McIlraith, “Beyond classical
planning: Procedural control knowledge and preferences in state-of-
the-art planners,” in Conf. on Artif. Intell., 2008, pp. 1509–1512.

[23] M. Li, Z. She, A. Turrini, and L. Zhang, “Preference planning for
markov decision processes,” in Artif. Intell., 2015, pp. 3313–3319.

[24] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,
“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction,” in Conf. on Artif.
Intell., 2015, pp. 3664–3671.

[25] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis, “Multi-
objective model checking of Markov decision processes,” Logical
Meth. in Comp. Sci., vol. 4, no. 4, pp. 1–21, 2008.

[26] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Meth. in Sys. Design, vol. 19, pp. 291–314, 2001.

[27] L. de Alfaro, “Formal verification of probabilistic systems,” Ph.D.
dissertation, Stanford University, 1997.

[28] V. Forejt, M. Kwiatkowska, and D. Parker, “Pareto curves for proba-
bilistic model checking,” in Int. Symp. on Aut. Tech. for Ver. and Anal.,
2012, pp. 317–332.

[29] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Int. Conf. on Comp. Aided Verif.,
vol. 6806. Springer, 2011, pp. 585–591.

