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Abstract

Robot control for tasks such as motion around obstacles or grasping

objects has advanced significantly in the last few decades. However,

controlling robots to perform complex tasks is largely still accomplished

by highly trained programmers in a manual, time consuming, and er-

ror prone process that is typically validated only through extensive

testing. Formal methods are mathematical techniques for reasoning

about systems, their requirements, and guarantees. Formal synthesis

for robotics refers to frameworks for specifying tasks in a mathemat-

ically precise language, and automatically transforming these specifi-

cations into correct-by-construction robot controllers or into a proof

that the task cannot be done. Synthesis allows users to reason about

the task specification rather than its implementation, reduces imple-

mentation error and provides behavioral guarantees for the resulting

controller. This paper reviews the current state of formal synthesis for

robotics, and surveys the landscape of abstractions, specifications and

synthesis algorithms that enable it.
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1. Introduction

Formal methods are mathematical tools and techniques used in several engineering domains

to reason about systems, their requirements, and their guarantees (1). Typically, formal

methods address two dual questions: Verification - “given a set of requirements or speci-

fications and a system model, does the system satisfy the specifications?”, and Synthesis

- “given a set of specifications, can one generate a system that is correct-by-construction,

that is, built in a way that is guaranteed to satisfy the requirements?”

The state of the art in robot control for tasks such as motion around obstacles or grasping

objects has advanced significantly in the last few decades through the development of motion

planners and learning algorithms. However, getting robots to perform complex tasks such

as completing the DARPA Robotics Challenge (2) is largely still accomplished by a team

of highly trained programmers who manually compose the different system components

together. This manual process is time consuming, error prone and typically validated only

through extensive testing.

Formal synthesis for robotics provides a framework for specifying complex robot tasks

in a mathematically precise language, and automatically transforming these specifications

into correct-by-construction robot controllers, when feasible. This approach allows a user

to reason about the task specification rather than the actual implementation, reduces im-

plementation errors and provides guarantees for the overall robot behavior. Furthermore,

the formal description of the task enables providing feedback regarding the specifications

themselves, such as whether they can or cannot be implemented by a physical robot in

the possibly unknown environment. The synthesis approach to robot control, depicted in

Figure 1, takes as input a specification and a model of the robot, potentially with a model

of the environment, initial state and/or a cost function, and outputs either a controller or a

proof that the specification is not feasible (is unrealizable). Roughly speaking, the synthesis

techniques can be grouped into three types:

1. Open-loop (non-reactive): Given a robot model and a specification, find a sequence

of states or actions that will guarantee the robot satisfies the specification. In this

approach the environment is static and is typically not modeled.

2. Iterative: Given a robot model, a prediction of the environment at each iteration,

and a specification, find a sequence of states or actions at each iteration such that the

robot satisfies the specification over the full execution horizon. Synthesis is performed

repeatedly, either periodically (in a receding horizon or model predictive control man-

ner) or when the expected environment changes.

3. Reactive: Given a robot model, an environment model and a specification, find a

strategy (i.e. a function from states to actions or other states) that will guarantee

the robot satisfies the specification under any modeled environment behavior. The

environment is typically modeled as uncertain or adversarial.

As described in Section 3, researchers have explored a wide range of specification for-

malisms with different expressive power. These include discrete temporal logics which are

defined over symbolic abstractions of the continuous system, probabilistic temporal logics

where the task definition includes constraints on the probability of success, and metric and

signal temporal logic that can express constraints on continuous time and state, respectively.

This article reviews the state of the art in formal synthesis of controllers for robots from

temporal logic. It discusses the algorithms used to transform the continuous problem of

robot motion and action to and from the symbolic structures used for synthesis (Section 2),
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the specification formalisms used to capture requirements on robot behavior and assumption

on environments (Section 3), and algorithmic approaches to synthesis (Section 4). The

article focuses on single robot systems and temporal logic specifications; multi-robot systems

(e.g. (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)) and recent approaches such as synthesis through

Satisfiability Modulo Theories (SMT) (e.g. (14, 15, 16)) are out of scope.

Figure 1: Synthesis for robot control : The input is a specification and a robot model.

Some approaches also take as input the initial state of the robot, a model of the environment

behavior and/or a cost function. The result of the synthesis algorithm is either a controller

to be executed by the robot, or a proof that the specification is not feasible (is unrealizable).

The black elements in the figure are common to all synthesis approaches while the blue

elements are present in some of them.

1.1. Guarantees and feedback

One of the main advantages of a formal synthesis framework for controlling robots is the

ability to provide both guarantees and feedback regarding task feasibility.

Guarantees : The synthesis approach takes a set of specifications and a system model

and generates a controller that achieves the specifications if one exists. The algorithms are

sound – if a controller is found, it is correct, and most are complete – if a controller exists

it will be found. Correctness here means that the system, at the level of abstraction of the

model, will satisfy its specification in any modeled environment. This does not mean that a

robot will never fail; the fidelity of the model with respect to reality will govern the success

of the actual physical execution. The correct-by-construction guarantees with respect to

the specification and abstraction of the synthesized controller, together with the ability to

refine the abstraction, eliminate human-error in implementation and are a strong indicator

of success, especially compared to manual composition of controllers.

Feedback and suggestions : Due to the formal problem description, if synthesis fails and

no controller is produced, then the specification cannot be fully realized by the models of the

system and the environment. This means that there exists a counter-example that shows

under what conditions the robot will fail. Leveraging these counter-examples, synthesis

frameworks are able to produce explanations for what can go wrong and suggestions for

how to modify the task to make it achievable. Furthermore, they can provide feedback
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about inconsistencies, redundancies and vacuity of the specifications themselves which are

often written by humans, and hence, error-prone.

Methods for enabling feedback on such unrealizable specifications cover logical inconsis-

tencies and environment behaviors that can prevent robot success at the specified abstrac-

tion level (17, 18), physical constraints that prohibit the robot from following the symbolic

solution (19), and specifications that are vacuous or a tautology (17, 20), i.e. where a

controller can be created that may not do anything. In the context of suggesting changes,

(21, 22, 23, 24, 25, 26) explore “minimum distance” revisions for LTL and automata-based

specifications. Methods for generating additional symbolic environment assumptions that

would make the specification realizable are explored in (27, 28). Automatic revisions to the

abstractions based on the dynamics of the robot are presented in (29, 30), and suggested

revisions due to probabilistic analysis of a synthesized controller are discussed in (31, 26).

Specification diagnosis and revision have also been explored for optimization-based synthesis

approaches that do not involve a discrete abstraction (32).

1.2. Relation to other communities

Synthesis, as discussed in this paper, is used to automate the creation of robot controllers

from high-level specifications, thereby enabling users to reason about properties of robot be-

havior and automatically generate a correct implementation of the behavior for the physical

system.The process of automating high-level behavior is the major focus of related commu-

nities, most notably the Artificial Intelligence (AI) planning community and the Discrete

Event Systems (DES) community.

In AI, the planning problem is typically represented as a set of actions, each with pre-

conditions and postconditions, an initial state and a goal state expressed using the Planning

Domain Definition Language (PDDL) (33) or one of its variants. Generally, planning algo-

rithms search for a sequence of actions that will lead the system from the initial to the goal

state. Variants that are closer to the work described in this paper are those that handle

temporally extended goals (e.g. (34, 35)), i.e. goals that are more complex than a single

state, universal planners (e.g. (36)) that synthesize reaction rules for possible environment

behaviors, and contingency planners (e.g. (37, 38)) that create branching plans where the

system makes a decision based on the environment. Some work has also explored temporal

logic for specifying goals, and leveraged model checking techniques for planning (39, 40).

The differences between synthesis approaches and those pursued in the planning community

span the way the problem is formulated, the complexity of the algorithms, the expressive-

ness of the specifications and system models, and the type of feedback that is possible when

the synthesis/planning problem can and cannot be solved.

In DES, the system (plant) is a transition system with states and transitions. The main

difference between the system model in DES and in synthesis is that in DES, the set of

transitions are separated into controlled and uncontrolled transitions. The main problem

addressed by the DES community is that of finding a supervisory controller that chooses

which controlled transitions to take so that the system achieves a high-level behavior. A

comparison of DES supervisory control and reactive synthesis is presented in (41).

1.3. Example

The following example is used to illustrate the concepts discussed in this paper. Consider

a mobile robot moving in the workspace depicted in Fig 2. The workspace contains areas
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of interest, such as a mail room and offices, that may be used as part of the specification

describing the robot’s desired behavior.

In addition to actuation, the robot is equipped with exteroceptive sensors such as cam-

eras and range finders. We assume that the rich information from these sensors is abstracted

into discrete symbols such as “person detected” or “alarm is on” that can be either True or

False. These symbols can be the output of classifiers or other perception algorithms. The

task used throughout this paper is a mail-delivery task, where the robot is instructed to

deliver letters and packages to rooms and/or people.

Figure 2: Workspace for mail delivery example

2. Abstractions: System representations

The synthesis algorithms described in this paper require abstractions of the task, the envi-

ronment and the physical robot behavior (i.e. its dynamics). These abstractions map the

physical, continuous problem of robot motion and action into sets of symbols that can be

reasoned about and that can be mapped back to sensing and control for the robot. This

section describes robot dynamics models (Section 2.1), symbolic structures used in the syn-

thesis algorithms (Section 2.2) and techniques for mapping the physical to the symbolic and

back (Section 2.3).

2.1. Robot models

All approaches to robot controller synthesis assume a robot dynamics model; the model can

be either continuous or discrete time, and with or without disturbances. The continuous

and logical states of the robot are denoted with x ∈ X ⊆ (Rnc × {0, 1}nl), the continuous

and logical control inputs with u ∈ U ⊆ (Rmc × {0, 1}ml), and the (possibly adversarial)

external inputs in the form of noise or disturbances w ∈W ⊆ (Rec × {0, 1}el). The system

model for each approach is one of

ẋ = f(x, u), ẋ = f(x, u, w),

and is in some cases assumed to admit a discrete-time approximation of the form

x(tk+1) = fd(x(tk), u(tk)), x(tk+1) = fd(x(tk), u(tk), w(tk))

where for all k > 0, tk+1 − tk = ∆t.

Trajectory ξ:
Execution of the
system dynamics
model

A system trajectory ξ is an execution of the system dynamics from an initial state x0.

In the discrete-time model, ξ = (x0u0w0)(x1u1w1)(x2u2w2)... becomes a sequence of states,

control actions and external inputs.
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2.2. Symbolic representations

Synthesis techniques that are covered in this paper are based on deterministic, non-

deterministic and probabilistic discrete structures. Each structure is assumed to be defined

with respect to a set of symbols, referred to as the set of atomic propositions AP .

2.2.1. Kripke Structure. Given a set of atomic propositions AP , a Kripke structure (K)

over AP is a tuple K = (S, S0, R, L) (42) where

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• R ⊆ S × S is a transition relation where for all s ∈ S there exits a state s′ ∈ S such

that (s, s′) ∈ R,

• L : S → 2AP is the labeling function such that L(s) ⊆ AP is the set of atomic

propositions that are True in state s.

Path ω: Path in

symbolic structure

Trace/Word σ:
Sequence of labels

A path ω in K is an infinite sequence ω = ω0 → ω1 → ω2 · · · where ω0 ∈ S0, ωi ∈ S,

and (ωi, ωi+1) ∈ R for all i > 0. Given a path ω, a trace (word) σ over ω is defined as

σ = L(ω0)L(ω1)L(ω2) · · · where L(ωi) ∈ 2AP is the label of state ωi.

2.2.2. Labeled Markov Decision Processes. A labeled Markov Decision Process (MDP)

(adapted from (43)) is a tuple M = (S, s0, Act, Steps,AP,L) where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• Act =
⋃
s∈S A(s) is the set of actions, where A(s) denotes the set of available actions

at state s,

• Steps : S × Act → Dist(S) is a (partial) probabilistic transition function that maps

each state-action pair (s, a), s ∈ S and a ∈ A(s) to a discrete probability distribution

over S,

• AP is a set of atomic propositions used to label the states,

• L : S → 2AP is the labeling function such that L(s) ⊆ AP is the set of atomic

propositions that are True in state s.

A path ω inM is a sequence ω = ω0
a1−→ ω1

a2−→ ω2 · · · where, ω0 = s0, and for all i > 0,

ωi ∈ S, ai+1 ∈ A(ωi) and Steps(ωi, ai+1)(ωi+1) > 0. ω is used to indicate an infinite path,

ωfin to denote a finite path and last(ωfin) to denote the last state of a finite path. Paths
and Pathfins are used to indicate the set of all infinite paths ω and the set of all finite paths

ωfin starting at state s, respectively.

A control policy µ is a function mapping finite paths ωfin ∈ Pathfins ofM to an action

a ∈ Act such that a ∈ A(last(ωfin)). If policy µ only depends on last(ωfin), it is history

independent and is called a stationary policy.

Paths, Pathfins :
Set of infinite and
finite paths starting

in state s,

respectively

Control policy µ:
Function mapping
finite paths to
actions

2.3. Physical Interpretation

As mentioned in Section 2.2, synthesis is performed on symbolic structures; however, the

resulting controller is implemented on the physical system. Crucial to the success of the

robot’s behavior is the ability of the robot to continuously implement all the symbolic

transitions in the controller. This is formally defined as a simulation relation (44) where

one system can mimic all the behaviors of the second system. For robots, ideally, the
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continuous physical system simulates the symbolic one.

The following subsections describe methods and algorithms for mapping states and con-

trols of the continuous system to labels and transitions of the symbolic structures. These

processes of abstraction create symbols and assigns physical meaning to them. This sec-

tion describes the creation of abstractions relating to the robot motion and action in the

workspace. For abstracting sensor information or more generally the environment state,

one can use classifiers or other perception algorithms which are out of scope of this paper.

The abstraction algorithms are grouped into three categories: partitions (Section 2.3.1)

where the labels are mutually exclusive and the continuous system simulates the symbolic,

motion primitives (Section 2.3.2) where the labels may overlap and the continuous system

simulates the symbolic, and motion planners (Section 2.3.3) where the labels are typically

mutually exclusive but the transitions are probabilistically complete, meaning the continu-

ous system might not be able to simulate the symbolic one.

For the following, consider the workspace of the robotW that contains non-overlapping

regions of interest Regi such that Regi ∩ Regj = ∅ for all i 6= j. The regions do not

necessarily cover the entire workspace.

2.3.1. Partitions. In this approach, the continuous state space of the robot X ⊆ Rnc is

partitioned into a set {ri} such that ri ⊆ X, ∪iri = X and ri ∩ rj = ∅ for all i 6= j.

Overloading notation, the symbol ri is used as a label in the symbolic structure to mean

that when a node is labeled with ri, the physical system’s state x ∈ ri ⊆ X. Due to the

partition, the symbols ri are mutually exclusive, that is, no more than one symbol can be

True at any time. Transitions in the discrete structure correspond to possible actions of

the system and are related to the adjacency relationship of the cells in the partition. If a

transition exists, then the cells are adjacent and the system can move from one cell to the

other, but the reverse does not hold, i.e. if cells are adjacent, there may not be a transition

in the symbolic structure. Figure 3, left column depicts a possible partition for a subset of

the workspace of the mail-delivery example and the corresponding symbolic structure.

There are different approaches to creating such partitions depending on the dynamics

of the robot. For a holonomic robot ẋ = u, moving in a two or three dimensional workspace

partitioned into polytopes, approaches such as (45, 46, 47) create vector fields that are used

as a feedback controller to drive the robot from any state in a region to an adjacent region.

There, the workspace regions Regi and a convex decomposition of the rest of the workspace

W are the cells and labels. By considering points on boundaries as the goal set, other

potential field based controllers such as navigation functions (48) can be used to create the

symbolic structure. For multi robot tasks, similar decompositions can be created (49).

For robots with more complex, possibly nonlinear dynamics, other approaches discretize

the nc-dimensional state space of the system together with the set of control inputs into a

high-dimensional grid and create a non-deterministic structure that takes into account the

effects of discretization. These approaches typically compute, for each cell in the grid, an

over approximation of the set of cells reachable under a control action. Different techniques

exist that vary in their assumptions regarding the underlaying dynamics and the fidelity

of the abstraction with respect to the full model (e.g. (50, 51)). Robustness of such

abstractions to phenomena such as delays, measurement errors and model uncertainties is

discussed in (52). Based on these ideas, the hybrid systems community has created different

tools that automatically create the abstraction given the system model and the environment

(53, 54, 55).
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(a) Abstraction techniques: (i) partition - the blue arrows represent the vector fields that
would drive the robot from rL1 to rL2, (ii) motion primitives - the blue outline of motion
primitive mpi reprersent its invariant set ri and the blue region represent its goals set gi,
and (iii) motion planner - the blue graph represents the output of a motion planner that
is searching for a path from Office C to the Hall.

(b) Symbolic structures: (i) partition - the arrows are bidirectional only if there exist
controllers that can drive the robot between any adjacent regions (e.g. for holonomic
robots (45, 46, 47)). Depending on the partition algorithm, these arrows may become
one directional and the symbolic structure may become nondeterministic, (ii) motion
primitives - an arrow exists between mpi and mpj if and only if gi ⊆ rj , and (iii) motion
planner - the symbolic structure is initially fully connected (includes bidirectional arrows
between adjacent regions). If the motion planner fails to find a path between regions i
and j, the arrow connecting Regi and Regj is removed.

Figure 3: Abstractions and symbolic structures for the mail delivery example.

2.3.2. Motion primitives. Similar to the partition approach, the physical meaning of the

symbols in the abstraction using motion primitives are related to regions of the state space.

The main differences are that (i) the state space is no longer divided into a grid, (ii) the

set of regions representing motion primitives are usually not disjoint, and (iii) the set of

regions does not have to cover the whole state space. Formally, the state space of the robot

X ⊆ Rnc contains a set {ri} such that ri ⊆ X. For each motion primitive mpi, ri is the

domain of the primitive and gi ⊆ ri is the goal set that should be reached by activating mpi.

As before, overloading notation, the symbol ri is used as a label in the symbolic structure

to mean that when a node is labeled with ri, the physical system’s state x ∈ ri ⊆ X.

Transitions in the discrete structure correspond to set inclusions of goals and domains of

8 Hadas Kress-Gazit, Morteza Lahijanian, Vasumathi Raman



motion primitives; if gi ⊆ rj then there exists a transition from ri to rj . If a transition exist,

then motion primitive j can be activated after the completion of motion primitive i, but the

reverse does not hold. Figure 3, middle column depicts a possible set of motion primitives

for part of the workspace for the example and the corresponding symbolic structure.

Note that with motion primitives, as opposed to partitions, the symbols are not mutually

exclusive nor do they always cover the workspace. If the specification is given over regions of

the workspace, care must be taken to make sure those regions of space are fully covered by

the motion primitives and if no set of motion primitives can cover a region, the specification

and region abstraction must be refined (30).

The notion of motion primitive is pervasive in robotics, with many different approaches

to generating them such as reinforcement learning, learning by demonstration, control the-

ory, and more. In order to enable guarantees for the robot’s physical behavior, a simulation

relation is required between the physical system and the abstraction. This means that the

motion primitives that are suitable for synthesis must have two properties: invariance and

liveness (reachability); Invariance is the property that when activating motion primitive

mpi, the state remains in the domain x(t) ∈ ri, that is, the state will not exit the domain

of the primitive. Liveness or reachability is the property that the state of the system will

reach the goal set gi in finite time from all states in the domain ri.

Approaches for generating motion primitives that satisfy the invariance and liveness

properties include using the Hamilton-Jacobi formulation (56, 57, 58), creating vector fields

over regions in the environment (46, 59), and Sums-of-Squares optimization for generating

funnels around trajectories (60, 61, 62, 63, 64).

In the case of reactive synthesis, where the behavior of the robot might change due

to changes in the environment, to ensure correct execution with motion primitives the

abstraction must be reactively composable (65, 30). This means that there exists a set of

motion primitives that enable the robot to “change its mind” and switch from one motion

primitive to another before reaching its goal set. Moreover, special care with respect to

timing semantics is needed when designing abstractions for robots with multiple actuation

capabilities (66).

2.3.3. Motion planners and trajectories. In the previous two sections the abstraction is

created a priori, based on the dynamics of the robot, together with the symbolic structure.

Another approach is to start with a partition of the workspace and then, through interative

synthesis, search for robot trajectories that enable the selected transitions in the symbolic

structure. This search can be done using motion planners such as sampling-based ones (67),

optimization based techniques such as model predictive control, reachability computations

similar to the ones discussed in Section 2.3.1, etc.

Similar to the partition approach, the workspace is discretized into cells; however, as

opposed to the partition approach, the cells do not have to observe dynamic constraints

on the robot, and they typically correspond to regions that are semantically meaningful

for the specifications. Formally, the workspace of the robot W is partitioned into regions

Regi such that Regi ∩Regj = ∅ for all i 6= j and ∪iRegi =W. Overloading notation, Regi
is the symbol that is true when the robot is in region i of the partition. The transitions

correspond to adjacency of the regions, i.e., if regions share a boundary then there exists a

bi-directional transition between these regions, unless such a transition was removed during

the iterative synthesis procedure. Figure 3, right column depicts the symbolic structure

and a motion planner searching for a transition.
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This approach bypasses the need for detailed abstractions and is especially powerful for

high-dimensional systems. The main consequence of this abstraction approach is relaxed

or no guarantees. In open-loop synthesis, the synthesized controller is not guaranteed to

be implementable on the physical system due to lack of simulation relation between the

symbolic and physical systems – there might be a symbolic transition that is impossible

to physically implement. In iterative synthesis, the guarantees are determined by the em-

ployed underlying motion planner. For instance, with sampling-based motion planners,

probabilistic guarantees can be obtained.

3. Specifications

Synthesis is the process of transforming a specification – the “what”, to an implementation

– the “how”. Specifications can be roughly grouped into two types: safety specifications,

which describe how the robot should always behave, e.g. it should “never collide with an

obstacle” or “always maintain line-of-sight from a base station”, and liveness specifications,

which describe goals or tasks/states the robot must eventually achieve, e.g. it should

“eventually go back to the recharge station” or “once in a while send its location”. Safety

and liveness specifications can be bounded over finite or infinite horizons, be deterministic

or probabilistic, and be defined over different types of abstractions.

The majority of the work on synthesis for robots utilizes temporal logic to express desired

robot behavior and assumptions on the behavior of the dynamic environment. Roughly

speaking, temporal logic contains, in addition to Boolean operators, temporal operators

that allow one to reason about the change in the truth value of propositions over time.

This section describes several specification formalisms that have emerged in recent years

due to developments in synthesis engines that make the synthesis process possible. To

illustrate the expressive power of each formalism, Section 3.4 provides example specifications

related to the mail-delivery example. The abstraction used is a partition of the workspace

in Figure 2, where the nodes in the symbolic structure are the seven regions representing

the rooms and the hallway.

3.1. Discrete logics

There are different variants of discrete temporal logic (42); most of the work in synthesis

for robots utilizes Linear Temporal Logic (LTL), described below. It is worth noting that

there are two notation conventions in the literature for the temporal operators; either ©,

�, �, U , or X, G, F , U . In this paper, the former convention is followed.

3.1.1. LTL Syntax. Let AP be a set of atomic propositions where π ∈ AP is a Boolean

variable. LTL formulas are constructed from atomic propositions π ∈ AP according to the

following grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕU ϕ

where ¬ (“not”) and ∨ (“or”) are Boolean operators, and © (“next”) and U (“until”) are

temporal operators. The Boolean constants True and False are defined as True = ϕ ∨ ¬ϕ
and False = ¬True respectively. Given negation (“not”,¬) and disjunction (“or”,∨), one

can define conjunction (“and”) ϕ∧ϕ = ¬(¬ϕ∨¬ϕ), implication (“if”) ϕ1 ⇒ ϕ2 = ¬ϕ1∨ϕ2,

and equivalence (“iff”) ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).
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Given the “next” (©) and “until” (U) temporal operators, additional temporal operators

can be derived such as “eventually”: �ϕ = True U ϕ and “always”: �ϕ = ¬ �¬ϕ.

3.1.2. LTL Semantics. The semantics of an LTL formula ϕ are defined on an infinite se-

quence σ = σ1σ2 . . . of truth assignments to the atomic propositions π ∈ AP , where σi
denotes the set of atomic propositions that are True at position i. The recursive definition

of whether σ satisfies LTL formula ϕ at position i (denoted σ, i |= ϕ) is:

• σ, i |= π iff π ∈ σi,
• σ, i |= ¬ϕ iff σ, i 6|= ϕ,

• σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2,

• σ, i |=©ϕ iff σ, i+ 1 |= ϕ,

• σ, i |= ϕ1 U ϕ2 iff there exists k > i such that σ, k |= ϕ2, and for all i 6 j < k,

σ, j |= ϕ1.

Intuitively, the formula©ϕ expresses that ϕ is True in the next “step” (the next position

in the sequence) and the formula ϕ1 U ϕ2 expresses the property that ϕ1 is True until ϕ2

becomes True. The sequence σ satisfies formula ϕ if σ, 0 |= ϕ. The sequence σ satisfies

formula �ϕ if ϕ is True in every position of the sequence, and satisfies the formula �ϕ if

ϕ is True at some position of the sequence.

3.1.3. Fragments of LTL. As will be described in Section 4, reactive synthesis for full LTL

is computationally prohibitive (68). Therefore, researchers have explored several fragments

of LTL that while not as expressive as full LTL, are amenable to more tractable synthesis

algorithms. Two fragments used by several researchers are the GR(1) fragment (69) and

co-safe LTL (70).

GR(1) fragment: Let the set AP = X ∪Y be composed of X , the set of propositions cor-

responding to the environment state as observed by sensors , and Y, the set of propositions

corresponding to the robot state, e.g. its position and actions.

LTL formulas in the GR(1) fragment (69) are of the form ϕ = (ϕe ⇒ ϕs). The

subformula ϕe is an assumption about the sensor propositions, and thus about the behavior

of the environment. An environment is considered admissible if it always satisfies the

assumptions made about it in ϕe. It is important to note that one does not have to make

any assumptions about the environment; specifying ϕe = True means that no assumptions

are made. The formula ϕs represents the desired behavior of the robot.

The formula ϕ is True if ϕs is True, i.e., the desired robot behavior is satisfied, or

ϕe is False, i.e. the environment did not behave as expected. This means that when the

environment does not satisfy ϕe and is thus not admissible, there is no guarantee for the

robot behavior.

Both ϕe and ϕs have the following structure

ϕe = ϕei ∧ ϕet ∧ ϕeg, ϕs = ϕsi ∧ ϕst ∧ ϕsg,

where

• ϕei and ϕsi are non-temporal Boolean formulas constraining (if at all) the initial

value(s) of the sensor propositions X and robot propositions Y respectively.
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• ϕet and ϕst represents safety assumptions and requirements, i.e. constraints that must

always hold, on the environment and robot respectively. For example, the assumption

that a package will never be sensed when the robot is in the Lounge belongs to ϕet and

ϕst includes motion constraints, for example, if the robot is in Office A, in the next

state it can only be in either Office A or the Hallway, and behavior requirements, for

example, if the robot is carrying a package it may not go into the Lounge.

• ϕeg and ϕsg represent liveness assumptions and requirements that must become True

sometimes (or eventually) for the environment and robot respectively. For exam-

ple, an assumption that a package will eventually arrive can be part of ϕeg, and a

requirement that the robot eventually go to the Lounge can be part of ϕsg.

Co-safe LTL: This fragment includes LTL formulas whose truth value can be determined

based on a finite sequence of truth assignments (70). The syntax is defined as

ϕ ::= π | ¬π | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | ϕU ϕ

Note that negation is allowed only on propositions; not on formulas. This means the

operator “always” (�) is not part of the fragment (the truth value of a formula with � can

only be evaluated over infinite traces of a system), while “eventually” ( �) is.

3.2. Probabilistic logics

In robotics, it is natural to consider specifications that have a probabilistic nature. Rather

than a deterministic set of requirements from the robot, the specification can include prob-

abilities attached to the different task components. Probabilistic Computation Tree Logic

(PCTL) (adapted from (43)) can capture these desired probabilities.

3.2.1. PCTL Syntax. As with LTL, formulas are defined over a set of atomic propositions

AP . PCTL formulas are state formulas defined recursively as:

State formulas: ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | P./p[ψ]

Path formulas: ψ ::=©ϕ | ϕU6k ϕ | ϕU ϕ

where P is the probabilistic operator, ./∈ {<,6,>, >}, p ∈ [0, 1], and k ∈ N. State formulas

ϕ are evaluated over the states of an MDP, while the path formulas ψ are assessed over

paths and are only allowed as the parameter of the P-operator.

As in LTL, conjunction (“and”, ∧), implication (“if”, →), and equivalence (“iff”, ⇔)

can be derived from negation (¬) and disjunction (∨), and “eventually” ( �) can be derived

from “until” (U). By using �, the “always” (�) operator can be defined as P./p[�ϕ] ≡
P.̄/p[ �¬ϕ], where 6̄ ≡>, <̄ ≡>, >̄ ≡<, and >̄ ≡6 (71). Similarly, the bounded operators

�
6k

and �6k can be defined using U6k.

3.2.2. PCTL Semantics. PCTL formulas can be evaluated either over discrete-time Markov

chains or Markov Decision Processes (MDP). In this paper, the underlying system model for

probabilistic systems in an MDP M = (S, s0, Act, Steps,AP,L); therefore, the semantics

are introduced over MDPs. A state formula ϕ is satisfied in state s ∈ S under policy µ as

follows:

• s |= π iff π ∈ L(s),
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• s |= ¬ϕ iff s 6|= ϕ,

• s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2,

• s |= P./p[ψ] iff pµs (ψ) on p,

where pµs (ψ) is the probability of all (infinite) paths that satisfy ψ starting at state s under

policy µ.

A path formula ψ is satisfied over path ω ∈ Paths as follows:

• ω |=©ϕ iff ω1 |= ϕ,

• ω |= ϕ1 U6k ϕ2 iff there exists i 6 k such that ωi |= ϕ2 and for all j < i, ωj |= ϕ1,

• ω |= ϕ1 U ϕ2 iff there exists k > 0 such that ω |= ϕ1 U6k ϕ2.

3.3. Metric logics

The logics described above are defined over propositions that are Boolean variables that can

either be True of False. Other logics, such as Signal Temporal Logic (STL) (72) enable a

richer specification language by allowing discrete time continuous signals xi, and predicates

over them to define the building blocks of the language.

3.3.1. STL Syntax. Let AP γ be a set of atomic predicates where πγ ∈ AP γ is a predicate

X → {0, 1} whose truth value corresponds to the sign of the function γ : Rnc → R. Signal

Temporal Logic (STL) formulas are constructed from atomic predicates πγ according to the

following grammar:

ϕ ::= πγ | ¬ϕ | ϕ ∨ ϕ | ϕU〈a,b〉 ϕ

where 〈∈ {[, (}, 〉 ∈ {], )} and a, b ∈ R>0. As for LTL, conjunction (∧), implication (⇒) and

equivalence (⇔) can be derived from negation (¬) and disjunction (∨), and timed “eventu-

ally” ( �〈a,b〉) and timed “always” (�〈a,b〉) can be derived from timed “until” (U〈a,b〉). The

main differences with respect to LTL are the notion of predicate that replaces propositions,

that is, the continuous signal is explicitly abstracted through the function γ, and the notion

of continuous intervals of time which also renders the notion of “next” (©) meaningless.

3.3.2. STL Semantics. The satisfaction of an STL formula ϕ at time t is defined as:

• (x, tk) |= πγ iff γ(x(tk)) > 0,

• (x, tk) |= ¬ϕ iff (x, tk) 6|= ϕ,

• (x, tk) |= ϕ1 ∨ ϕ2 iff (x, tk) |= ϕ1 or (x, tk) |= ϕ2,

• (x, tk) |= ϕ1 U〈a,b〉 ϕ2 iff there exists tk′ ∈ 〈tk + a, tk + b〉 such that (x, tk′) |= ϕ2, and

for all tk′′ ∈ [tk, tk′ ], (x, tk′′) |= ϕ1.

A projection of ξ onto the state space, x = x0x1x2... , satisfies ϕ, denoted by x |= ϕ,

if (x, t0) |= ϕ. Informally, x |= �[a,b] ϕ if ϕ holds for all time between a and b, and

x |= ϕ U[a,b] ψ if ϕ holds at every time step before ψ holds, and ψ holds at some time step

between a and b. Additionally, �[a,b] ϕ = True U[a,b] ϕ, which is True if ϕ holds at some

time step between a and b.

An STL formula ϕ is bounded-time if it contains no unbounded operators; the bound

of ϕ is the maximum over the sums of all nested upper bounds on the temporal operators,

and provides a conservative maximum trajectory length required to decide its satisfiability.

For example, for �[0,10] �[1,6] ϕ, a trajectory of length N ≥ 10 + 6 = 16 is sufficient to

determine whether the formula is True.
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A unique property of STL is that the formalism admits a quantitative semantics which,

in addition to the yes/no answer to the satisfaction question, provides a real number ρϕ(x, t),

called the robustness of satisfaction, grading the quality of the satisfaction or violation (73).

The robustness score ρϕ(x, t) is computed recursively on the structure of the formula just

like the Boolean semantics, and defined such that (x, t) |= ϕ ⇐⇒ ρϕ(x, t) > 0. The

robustness score should be interpreted as how much the model satisfies ϕ; its absolute

value corresponds to the distance of x from the set of trajectories satisfying or violating

ϕ. Such semantics have also been defined for other timed logics including Metric Temporal

Logic (74) to assess the robustness of the systems to parameter or timing variations.

3.4. Example specifications for the mail delivery scenario

Given the abstraction, the set of propositions AP = {OfficeA,OfficeB ,OfficeC ,OfficeD,

Lounge,Mailroom,Hallway ,Pickup,Deliver ,SensePackage} includes the regions, the pick

up and deliver actions, and the sensor that detects a package is available. The set of

functions γRegi return True when the position of the robot is in Region i. The following

are example encodings of specifications in the different logics:

Co-safe LTL (non-reactive): (¬Deliver)U(Deliver∧(OfficeB∨OfficeC)) expresses “deliver

a package to one of offices B or C but not anywhere else” .

GR(1) fragment (reactive): � �(SensePackage → (Deliver ∧ (OfficeB ∨ OfficeC))) ∧
� �(¬SensePackage → Mailroom) expresses “If you sense a package then deliver it to

Office B or Office C, otherwise go to the mail room” (only part of the formula is shown).

PCTL: P>0.95( �(Deliver ∧ (OfficeB ∨OfficeC))) expresses “The robot should deliver the

package to Office B or C with probability greater than 0.95”.

STL: �[0,5](Deliver ∧ (OfficeB ∨ OfficeC)) expresses “Deliver the package to Office B or

Office C within 5 time units”.

4. Synthesis Algorithms

Having described different abstractions and specification formalisms in the previous sections,

this section gives an overview of the synthesis algorithms used to synthesize controllers.

For each algorithm, the margin notes describe the abstraction, specification formalisms and

structure of the resulting controller relevant to that algorithm.

4.1. Automata based

Automata-based synthesis algorithms are defined for systems that are abstracted as a Kripke

structure K. Here the specifications are given as LTL formulas and the abstraction K is

deterministic, i.e., there is a unique initial state S0 = {s0}, and every transition (s, s′) ∈ R
can be chosen by the robot. The algorithms for probabilistic and non-deterministic systems

are discussed in Sections 4.2 and 4.3.

Automata-based synthesis methods generally include three main steps:

Abstraction:
Deterministic Kripke

structure

Specification: LTL

Synthesis product:
Sequence of states

1. translation of the specification into an automaton,

2. composition of the system abstraction with the automaton, and

3. computation of an accepting path or policy over the composed system.

For example, an LTL formula can be automatically transformed into a Nondeterministic

Büchi Automaton (NBA) that accepts precisely those traces that satisfy the formula (42,
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71). Given an abstraction K over AP and an LTL formula ϕ also defined over AP , the

automata-based algorithms generate the product structure KP = K×A, where A is an NBA

constructed from ϕ with a set of state Z, a set of input alphabets Σ = 2AP , a transition

function δ : Z × Σ→ 2Z , and a set of accepting states FNBA ⊆ Z. In KP , the set of states

is S×Z, and a transition exists from state (s, z) to (s′, z′) if (s, s′) ∈ R and z′ ∈ δ(z, L(s′)),

where s, s′ ∈ S and z, z′ ∈ Z. Let ωP denote an infinite path of KP that visits the states in

FP = S×FNBA infinitely often. The projection of ωP onto A is an accepting run satisfying

ϕ and the projection of ωP onto K is an abstraction path that also satisfies ϕ. Therefore,

the synthesis problem is reduced to finding ωP over KP . This computation boils down to

two graph search steps: (i) identifying the cycles in KP that contain at least one accepting

state in FP , and (ii) finding a path from an initial state to one of the cycles. This results

in a path ωP = ωPωP , where ωP is a finite path, known as the prefix, and ωP is an infinite

repeat of a cycle, known as the suffix.

Similarly, from a co-safe LTL formula ϕ, a Deterministic Finite Automaton (DFA) can

be constructed that accepts only the finite traces that satisfy ϕ (70). For DFAs, in the

synthesis algorithm, after obtaining the product KP = K ×A, it is enough to find a finite

path, i.e., ωP = ωP , to an accepting state in FP = S × FDFA from the initial state.The

computational bottleneck for automata-based synthesis algorithms lies in the translation of

the formula to the automaton. The complexity of this translation is exponential in the size

of the formula for LTL to NBA and doubly exponential for co-safe LTL to DFA.

Most work on automata-based synthesis for robot control follow the general steps of the

algorithm described above, e.g., (75, 76, 77, 78, 79, 80, 81, 82). The differences typically

lie in the abstraction step (underlying dynamical system) or the generation of ωP with a

desired property. For example, (76) introduces an end-to-end LTL synthesis framework for

linear dynamical systems through an automated construction of a bisimilar (equivalent)

abstraction using a simplex-based discretization. Techniques for path optimization are

studied, where the costs are typically defined over the transitions of the abstraction (79).

In some work, to avoid the complexity of abstraction (for nonlinear systems), a coarse

abstraction and the specification automaton are used to guide the search for a feasible

trajectory by reducing the problem to a series of constrained reachability problems (80).

In (75), instead of explicitly constructing the specification automaton, model checkers are

used to find a path that satisfies the specification.

To deal with complex and/or high dimensional dynamical systems, sampling-based mo-

tion planning has been introduced, e.g., (83, 84, 85, 81, 86, 87, 82). With these techniques,

though, it is difficult (if not impossible) to obtain a cyclic behavior for the robot. Therefore,

these frameworks focus on co-safe LTL formulas, which allow the expression of tasks that

can be achieved in finite time. Furthermore, these approaches typically consist of layers of

planners. At the highest level, the DFA A and the abstraction K are employed to guide

(suggest finite paths for) the exploration of the state-space for feasible solutions by the low-

level sampling-based planner. Depending on whether the low-level motion planner found

a path, the feasibility of the transitions in K are learned during the planning procedure,

leading to ever improving high-level plans (guidance).

4.2. MDP based

In MDP-based synthesis, the focus is on generating a policy that maximizes (or in some cases

minimizes) the probability of satisfying the specification. The first work (88, 89, 90, 91) in

www.annualreviews.org • Synthesis for Robots 15



MDP-based synthesis focused on specifications given as probabilistic logic formulas, namely

PCTL (43). These specifications are natural for probabilistic systems, and their synthesis

algorithms have polynomial complexity. Nevertheless, the syntax of PCTL is constrained

to one temporal operator per path formula, whereas in LTL, temporal operators can be

combined and nested to specify complex tasks. The major challenge in LTL synthesis for

probabilistic (noisy) systems, though, is dealing with infinite runs, which usually result in

a zero probability of satisfaction if a transition probability between two recurring states in

the path is less than 1. Therefore, the initial work in LTL synthesis for MDPs focused on

low-level controllers to reduce the stochastic nature of the system (92). By exploiting the

end components of MDPs, later work introduced full LTL-synthesis algorithms for MDPs

(93, 94, 95, 96), which involve solving an optimization problem over a structure, whose size

is doubly exponential in the length of the LTL formula. To overcome the computational

burden for high dimensional systems in large environments, the use of learning algorithms

has been explored in both PCTL and LTL synthesis (97, 98, 99, 100, 101). In recent

years, synthesis methods for uncertain MDPs have been studied to relax the single-valued

transition probability of MDPs (102, 103, 104). By allowing uncertainty over the transi-

tion probabilities, these models arguably provide a better modeling framework for physical

systems with noise than classical MDPs since it is typically difficult to compute an exact

transition probability for such systems.

PCTL Synthesis for MDPs: The PCTL control synthesis algorithm for MDPs takes

a PCTL formula ϕ and an MDP M and returns both the optimal probability of satisfying

ϕ and the corresponding control policy (88, 89, 91). The basic algorithm proceeds by

constructing the parse tree for ϕ and treating each operator in the formula separately.

Table 1: Probability optimization formulations for MDP-based synthesis.

Pmax=?[©ϕ1] p∗s = maxa∈A(s)

∑
s′∈Sat(ϕ1) Steps(s, a)(s′)

Pmax=?[ϕ1U6kϕ2] pks = maxa∈A(s)(
∑
s′∈S? Steps(s, a)(s′) · pk−1

s′ +
∑
s′∈Syes Steps(s, a)(s′))

Pmax=?[ϕ1Uϕ2] min
∑
s∈S? ps subject to:

ps >
∑
s′∈S? Steps(s, a)(s′) · ps′ +

∑
s′∈Syes Steps(s, a)(s′)

Abstraction: MDP

Specification: PCTL

Synthesis product:
Policy mapping
finite paths to an

action

For the formula Pmax=?[©ϕ1], the objective is to determine the action that produces

the maximum probability of satisfying ©ϕ1 at each MDP state. Thus, only the immediate

transitions at each state need to be considered, which reduces the optimization problem to

the one shown in Table 1, where p∗s denotes the optimal probability of satisfying ϕ at the

state s ∈ S, and Sat(ϕ1) ⊆ S is the set of states that satisfy ϕ1. This optimization problem

can be solved by a matrix-vector multiplication (91).

For formulas Pmax=?[ϕ1U6kϕ2] and Pmax=?[ϕ1Uϕ2], first the MDP states are grouped

into three subsets: states that always satisfy the specification Syes, states that never satisfy

the specification Sno, and the remaining states S?. Trivially, the probabilities of the states

in Syes and in Sno are 1 and 0, respectively. For U6k, the probabilities of the remaining

states s ∈ S? are defined recursively as shown in Table 1, which can be computed by k

matrix-vector multiplications. This results in a time dependent policy, i.e., for each time

index k, an action is assigned to each satisfying state. For U , the computation for the

states in S? is known as the Maximal Reachability Probability Problem (MRPP) (105),

which can be solved by the linear programming problem shown in Table 1. The complexity

of this method is polynomial in the size of the MDP M, which is |M| =
∑
s∈S |A(s)|, and
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the obtained control policy is stationary. The MRPP can also be solved by using value

iteration, which is essentially solving for U6k with the termination rule of convergence of

the probability values, i.e., pmax
s (ϕ1U6kϕ2) ≈ pmax

s (ϕ1U6k−1ϕ2) for all s ∈ S.

LTL Synthesis for MDPs: The LTL control synthesis algorithm for MDPs takes an

LTL formula ϕ and an MDP M and returns both the optimal probability of satisfying ϕ

and the corresponding control policy (93, 95). The algorithm follows the general method

of automata-based synthesis (Section 4.1). That is, first an automaton is constructed from

ϕ, and then a control policy is computed on the product of the automaton with the MDP.

In LTL synthesis for MDPs, instead of an NBA, a Deterministic Rabin Automa-

ton (DRA) (71) is generated from the LTL formula ϕ. The product MP = M × A
is then generated similar to the deterministic case (Section 4.1). Product MP is an

MDP whose transition probability function StepsP is defined in accordance to Steps as:

StepsP((s, z), aP)((s′, z′)) = Steps(s, a)(s′) if z′ = δ(z, L(s′)); 0 otherwise. Next, a graph

search is performed on MP to identify the end components that enable the satisfaction of

the DRA accepting condition, which requires infinite visits of some accepting states while

some particular states need to be visited finitely often. The synthesis problem is then

reduced to the computation of the optimal policy that maximizes the probability of reach-

ing these accepting end-components over MP . This problem is equivalent to solving the

MRPP, whose linear programming formulation in shown Table 1. For the case that ϕ is

co-safe LTL, the MRPP is set up to maximize the probability of reaching the MP states

that correspond to the accepting states of the DFA.

Abstraction: MDP

Specification: LTL

Synthesis product:
Policy mapping
finite paths to an

action

For both co-safe and full LTL formulas, the obtained optimal policy is stationary (history

independent) onMP . The policy can be mapped to the states and actions ofM, in which

case it becomes history dependent. Therefore, during the execution of the policy by the

robot, it is necessary to keep track of the robot’s evolution over the states of MP . The

complexity of this LTL synthesis algorithm for MDPs is polynomial in the size of the product

MDP, which itself is doubly exponential in the size of the LTL formula ϕ.

4.3. Game based

Recall from Section 3 that in reactive synthesis of robot controllers, the set of propositions

AP is divided into two sets: sensor propositions (X ) and robot propositions (Y). An

LTL formula ϕ is realizable if there exists a finite state strategy that, for every finite

sequence of truth assignments to the sensor propositions, provides an assignment to the

robot propositions such that every infinite sequence of truth assignments to both sets of

propositions generated in this manner satisfies ϕ. The synthesis problem is to find a finite

state controller (if one exists) that encodes this strategy, i.e. whose executions correspond

to sequences of truth assignments that satisfy ϕ. Synthesis of reactive systems has been

proven to have high computational complexity for many specification languages. For an

arbitrary LTL formula, the complexity of the synthesis algorithm is doubly exponential in

the size of the formula (68). However, when restricted to formulas of the GR(1) fragment,

the algorithm in (69) permits synthesis in time polynomial in the size of the abstracted

state space. The question of realizability is viewed as a two player game between the robot

and the environment, who have to play according to the transition rules defined by ϕie, ϕ
t
e,

ϕis and ϕte. The winning condition – referred to as the GR(1) condition – is provided by

ϕge ⇒ ϕgs . The utility of specifications of this form has been demonstrated in a variety of

robotic contexts, e.g. (106, 107, 108).
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Synthesis from GR(1) specifications reduces to solving a µ-calculus fixpoint equation

with three nested fixpoints on a game structure that is built from the specification. The

transitions in the game structure are given by the safety assumptions and guarantees (in

contrast to automata-based approaches, wherein the transition system is usually provided

separately), and the liveness properties are translated to environment and robot goals,

which the robot and environment players try to satisfy infinitely often.

The semantics of µ-calculus formulas can be found in (109, 69); an informal description

of the relevant portions are summarized as follows

• Q is the set of game states and JϕK is the set of states that satisfy ϕ.

• J �©ϕK is the set of states Q′ ⊆ Q from which the robot can enforce that the next state

will be in JϕK, regardless of what the environment does next (i.e. for every x ∈ 2X ).

• JµQ.ψ(Q)K is a least fixpoint operation, computing the smallest set of states Q satis-

fying Q = ψ(Q).

• JνQ.ψ(Q)K is a greatest fixpoint operation, computing the largest set of states Q

satisfying Q = ψ(Q).

Abstraction: Robot

and environment
transitions are part

of the specification

Specification: LTL,
GR(1) fragment of

LTL

Synthesis product:
Finite state

controller

In (69), the set of winning states for the robot is characterized by the µ-calculus formula

ϕwin =

ν


Z1

Z2

...

Zn

 ·

µY.

(∨m
i=1 νX.(J

1
s ∧ �©Z2 ∨ �©Y ∨ ¬J ie ∧ �©X)

)
µY.

(∨m
i=1 νX.(J

2
s ∧ �©Z3 ∨ �©Y ∨ ¬J ie ∧ �©X)

)
...

µY.
(∨m

i=1 νX.(J
n
s ∧ �©Z1 ∨ �©Y ∨ ¬J ie ∧ �©X)

)

 (1)

where J ie is the ith environment liveness from ϕge (i ∈ {1, ...,m}), and Jjs is the jth robot

liveness from ϕgs (j ∈ {1, ..., n}). Let ⊕ denote summation modulo n. For i ∈ {1, ...,m} and

j ∈ {1, ..., n}, the greatest fixpoint νX.(Jjs ∧ �©Zj⊕1∨ �©Y ∨¬J ie∧ �©X) characterizes the set

of states from which the robot can force the game to stay infinitely in states satisfying ¬J ie,
thus falsifying the left-hand side of the implication ϕe ⇒ ϕs, or in a finite number of steps

reach a state in the set Qwin = JJjs ∧ �©Zj⊕1 ∨ �©Y K. The two outer fixpoints ensure that

the robot wins from the set Qwin: µY ensures that the play reaches a Jjs ∧ �©Zj⊕1 state in

a finite number of steps, and νZ ensures that the robot can loop through the livenesses in

cyclic order. From the intermediate steps of the above computation, a state machine that

realizes the specification is extracted, provided every initial state is winning (69).

The GR(1) synthesis problem corresponds to solving equation (1), and has complexity

quadratic in the size of the game structure, i.e. O(|Q|2), which is still exponential in the

number of atomic propositions in the specification. This synthesis algorithm has been

extended to efficiently accommodate several fragments of LTL (110, 111, 66). Moreover,

open source tools such as JTLV (112) and slugs (111) do not build the game structure

explicitly but use binary decision diagrams (BDDs) as a symbolic data structure to efficiently

solve (1). Robotics and control-specific tools such as LTLMoP (113) and TuLIP (114) have

leveraged these implementations to provide domain-specific interfaces for operating in the

real world: these tools take care of all phases of synthesis other than the discrete logical

synthesis, i.e. specification (via a graphical user interface), abstraction (through the use of

robot-specific controllers), and execution (in simulation or on a physical platform).
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4.4. Optimization-Based Synthesis

Optimization-based approaches consider difference equations (Section 2.1) and take as input

an LTL, MTL or STL formula ϕ, a cost function of the form J(x0, u, w, ϕ) ∈ R, an initial

state x0 ∈ X, a horizon L and optionally an external environmental input signal of length

N, w ∈ WN . The three types of problems described in Section 1 are encoded and solved as

follows (formal summary in Table 2):

Open-loop (non-reactive): Find a control signal u of length N given a nominal environ-

ment w (115, 116, 73, 117, 118). The state of the robot is assumed fully observable, and

the environment inputs are known in advance. To allow interpretation of specifications over

infinite sequences of states, a prefix-suffix trajectory parameterization is usually used.

Abstraction:
Difference equation,

polytopic regions of
interest

Specification: LTL,

MTL, or STL, and a
cost function J

Synthesis product:
Control sequence

Iterative: Find a control signal u over a finite horizon L assuming that the environment can

change at each iteration k, but there exists a reliable prediction of it wk over the horizon L.

Such receding-horizon or model predictive control (MPC) problems, are solved iteratively

online: at each time step, only the first control input in the sequence is implemented, and

the problem is solved again (119, 73, 120). In (73, 120), a control input is synthesized

for infinite sequences satisfying ϕ = Gψ for formulas ψ with bound H, by repeatedly

synthesizing control for sequences of length L = 2H.

Reactive: Find a control signal u of length N given a possibly adversarial, a priori un-

certain environment w. As in the game-based synthesis approach (Section 4.3), the en-

vironment is assumed to satisfy the temporal logic formula ϕe (120), and the controllers

produced provide guarantees for specifications of the form ϕe ⇒ ϕs. For specification logics

such as STL that admit quantitative semantics, this problem is solved as a two-player game,

where the environment tries to minimize the quantitative satisfaction of the specification,

while the robot simultaneously tries to maximize it. In (120), counterexamples are used

to inductively refine the synthesized controller until convergence or a maximum number of

iterations.

Additional treatments for systems with uncertainty have also been proposed (121, 122),

but are outside the scope of this paper.

Table 2: Optimization-based synthesis formulations

Non-reactive Receding horizon Reactive

Find argmin
u∈UN

J(x0,u,w, ϕ) argmin
uL
K
∈UL

J(xk,u
L
k ,wk, ϕ) argmin

uN∈UN

max
wN∈WN ,w|=ϕe

J(ξ(x0,u
N ,wN ))

s.t. ξ(x0,u,w) |= ϕ ξ(x0,u,w) |= ϕ ∀wN ∈WN , ξ(x0,uN ,wN ) |= ϕ

All the above problem formulations include constraints on system evolution, based on

the modeled dynamics, and desired robot behavior encoded as temporal logic formulas

(which may be reactive, i.e. implications). Temporal logic constraints are encoded in

various ways, exploiting properties of the underlying logic. For example, (73) show how the

robustness of a STL specification ϕ can be recursively encoded using Mixed Integer-Linear

Program (MILP) constraints, and enforcing ρϕ(x, t) > 0 ensures satisfaction of the formula.

In (117) reach-avoid type LTL specifications over regions of interest that correspond to

unions of convex polytopes are encoded as MILP as well. Other approaches (115, 116, 122)

are tailored to specific fragments of temporal logic.

In all of the above approaches, the union of temporal logic constraints and robot con-

straints yields a single mathematical program (which is an MILP for linear or piecewise-
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linear robot dynamics), which can be checked for feasibility and solved when possible using

an off-the-shelf (MILP) solver. Given an objective function on runs of the system, it is also

possible to find an optimal trajectory that satisfies the logical specification. The robustness

provides a natural objective, either in the absence of, or as a complement to domain-specific

objectives on runs of the system.

Mixed integer-linear programs are NP-hard, but the computational costs of an MILP

encoding can be described in terms of the number of variables and constraints. In

optimization-based approaches to synthesis, if N is the length of the desired control signal,

P is the set of predicates used in the formula and |ϕ| is the length (i.e. the number of oper-

ators), then O(N · |P |) + O(N · |ϕ|) continuous variables are introduced. In addition, O(N)

binary variables are introduced for every instance of a Boolean operator, i.e., O(N · |ϕ|)
Boolean variables. The dimensionality of the discrete-time system also affects the size of the

constructed MILP linearly via the constraints encoding system evolution (more precisely,

through the size of the set of predicates P ).

5. Conclusion

This article describes formal synthesis for robot control – the models used to define the

problem, the specification formalisms used to capture high-level, complex tasks and the

main algorithms used to automatically transform the specifications into implementations

that can be used to control physical robots.

Synthesis is a powerful technique for increasing robot reliability as it provides guarantees

with respect to the model, and feedback regarding the specifications and model. Further-

more, by allowing a person to reason about the specification and not the implementation,

synthesis reduces the time to deployment of a new task while eliminating human-error in

the implementation. Synthesis’ main advantages are manifested when considering complex

tasks with different constraints, reactions to events in the environment, and goals, and also

when a robot needs to quickly change tasks and/or environment.

Synthesis for robotics is a growing field with high potential impact but the techniques

are not widely used yet. Some robotic tasks of high interest in the community, such as going

to a goal location in a cluttered workspace (for motion or manipulation), are better served

using motion planners or learned controllers. Complex robotic systems, such as humanoid

robots, are difficult to model and abstract - the size of the resulting symbolic structure is

either too large to synthesize over, or too small (meaning the abstraction is too coarse)

to enable a simulation relation with the continuous physical system. Existing software

for control and actuation of robots are typically not written in a way that can be easily

abstracted into a symbolic model. Writing specifications instead of implementations requires

both a paradigm shift in how robotic systems are deployed and expertise in the specification

formalisms. As synthesis techniques mature and symbolic models are developed for different

robot platforms, we expect to see synthesis become an important tool in the robust and

reliable deployment of robotic systems.

FUTURE DIRECTIONS

1. Abstractions: The choice of abstraction level impacts both the scalability of syn-

thesis and the guarantees it can provide. Too fine grained an abstraction causes

synthesis to becomes intractable, too coarse an abstraction causes the models to
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lose fidelity with respect to the physical system and synthesis can no longer provide

realistic guarantees. Techniques for developing abstractions that are task, robot

and environment dependent are an active area of research.

2. Synthesis and learning: There is great potential in combining formal synthesis and

learning, for scaling up synthesis, for creating abstractions that can be used for syn-

thesis, and for creating explainable AI. The challenge is maintaining the guarantees

while leveraging data-driven approaches to control.

3. Synthesis and Human-Robot Interaction (HRI): Formalizing models and creating

abstractions and specifications for HRI will enable synthesizing robot controllers and

feedback that are task, environment and also interaction dependent thus creating

robots that can explain and guarantee their behavior in an HRI setting.
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32. Ghosh S, Sadigh D, Nuzzo P, Raman V, Donzé A, et al. 2016. Diagnosis and repair for synthesis

from signal temporal logic specifications. In Proceedings of the 19th International Conference

on Hybrid Systems: Computation and Control, HSCC 2016, Vienna, Austria, April 12-14,

22 Hadas Kress-Gazit, Morteza Lahijanian, Vasumathi Raman



2016

33. McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, et al. 1998. {PDDL} – {The Planning

Domain Definition Language}. Tech. rep., Yale Center for Computational Vision and Control

34. Bacchus F, Kabanza F. 1996. Planning for Temporally Extended Goals. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence ({AAAI}-96). Portland, Oregon,

USA: AAAI Press / The MIT Press

35. Giacomo GD, Vardi MY. 2000. Automata-Theoretic Approach to Planning for Temporally

Extended Goals. In ECP ’99: Proceedings of the 5th European Conference on Planning.

London, UK: Springer-Verlag

36. Schoppers M. 1987. Universal Plans for Reactive Robots in Unpredictable Environments. In

Proceedings of the Tenth International Joint Conference on Artificial Intelligence ({IJCAI}-
87), ed. J McDermott. Milan, Italy: Morgan Kaufmann publishers Inc.

37. Pryor L, Collins G. 1996. Planning for Contingencies: {A} Decision-based Approach. J. Artif.

Intell. Res. {(JAIR)} 4:287–339

38. Heger FW, Singh S. 2010. Robust robotic assembly through contingencies, plan repair and re-

planning. In {IEEE} International Conference on Robotics and Automation, {ICRA} 2010,

Anchorage, Alaska, USA, 3-7 May 2010

39. Cimatti A, Pistore M, Roveri M, Traverso P. 2003. Weak, strong, and strong cyclic planning

via symbolic model checking. Artif. Intell. 147:35–84

40. Cimatti A, Roveri M, Bertoli P. 2004. Conformant planning via symbolic model checking and

heuristic search. Artif. Intell. 159:127–206

41. Ehlers R, Lafortune S, Tripakis S, Vardi MY. 2017. Supervisory control and reactive synthesis:

a comparative introduction. Discrete Event Dynamic Systems 27:209–260

42. Clarke EM, Grumberg O, Peled DA. 1999. Model Checking. Cambridge, Massachusetts: MIT

Press

43. Rutten JJMM, Kwiatkowska M, Gethin N, Parker D. 2004. Mathematical techniques for an-

alyzing concurrent and probabilistic systems. American Mathematical Society

44. Milner R. 1999. Communicating and mobile systems : the pi-calculus. Cambridge University

Press

45. Habets L, van Schuppen JH. 2004. A control problem for affine dynamical systems on a full-

dimensional polytope. Automatica 40:21–35

46. Conner DC, Rizzi AA, Choset H. 2003. Composition of local potential functions for global

robot control and navigation. In IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems,

vol. 4. Carnegie Mellon University, Robotics Institute, Las Vegas, NV

47. Lindemann SR, LaValle SM. 2005. Smoothly blending vector fields for global robot navigation.

In IEEE Conference on Decision and Control. Seville, Spain

48. Rimon E, Koditschek DE. 1992. Exact Robot Navigation Using Artificial Potential Functions.

IEEE Transactions on Robotics and Automation 8:501–518

49. Ayanian N, Kumar V. 2010. Decentralized Feedback Controllers for Multiagent Teams in

Environments With Obstacles. {IEEE} Transactions on Robotics 26:878–887

50. Pola G, Girard A, Tabuada P. 2008. Approximately bisimilar symbolic models for nonlinear

control systems. Automatica 44:2508–2516

51. Zamani M, Pola G, Mazo M, Tabuada P. 2012. Symbolic models for nonlinear control systems

without stability assumptions. IEEE Transactions on Automatic Control 57:1804–1809

52. Liu J, Ozay N. 2016. Finite abstractions with robustness margins for temporal logic-based

control synthesis. Nonlinear Analysis: Hybrid Systems 22:1–15

53. Mazo M, Davitian A, Tabuada P. 2010. PESSOA: A Tool for Embedded Controller Synthesis.

In 22nd International Conference on Computer Aided Verification (CAV 2010)
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