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ABSTRACT
Multi Agent Path Finding (MAPF) is the problem of planning paths
for agents to reach their targets from their start locations, such that
the agents do not collide while executing the plan. In safety-critical
systems, the plan is typically checked by a human supervisor, who
decides on whether to allow its execution. In such cases, we wish
to convince the human that the plan is indeed collision free.

To this end, we propose an explanation scheme for MAPF, which
bases explanations on simplicity of visual veri�cation by human’s
cognitive process. The scheme decomposes a plan into segments
such that within each segment, the paths of the agents are disjoint.
Then, we can convince the supervisor that the plan is collision
free using a small number of images (dubbed an explanation). In
addition, we can measure the simplicity of a plan by the number of
segments required for the decomposition. We study the complexity
of algorithmic problems that arise by the explanation scheme, as
well as the tradeo� between the length (makespan) of a plan and
its minimal decomposition. We also provide experimental results
of our scheme both in a continuous and in a discrete setting.
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1 INTRODUCTION
Multi Agent Path Finding (MAPF)
MAPF is a fundamental problem in AI, in which the goal is to plan
paths for several agents to reach their targets, such that paths can
be taken simultaneously, without the agents colliding. Applications
of MAPF are ubiquitous in any area where several moving agents
are involved, such as air-tra�c control, UAVs, warehouse robots,
autonomous cars, robotics, etc.

Unfortunately, most variants of MAPF are intractable. However,
the importance of this problem has generated a signi�cant body
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(a) Full Plan (b) Part 1: time 1–9

(c) Part 2: time 10–16 (d) Part 3: time 17–23

Figure 1: A plan for three agents in a 10⇥ 10 grid. The circles
and stars mark the initial and goal locations for the agents,
respectively. Figure (a) shows the full plan, and Figures (b),
(c), and (d) show a disjoint decomposition.

of work over the past decade [4, 7, 13, 24, 29, 30, 33], dealing with
various aspects of the problem and suggesting increasingly scalable
solutions.

Planning for a Human Supervisor
Inmany safety critical applications (e.g., air tra�c control, hazardous-
materials warehouses), planning is not fully automatic, and the plan
is only suggested to a human supervisor, who may act upon it. In
such settings, the plan has to be presented to the supervisor in some
humanly-understandable manner. In particular, the presentation
should enable the supervisor to understand the paths taken by the
agents, and to easily verify that the agents do not collide, as other-
wise the supervisor would not necessarily trust the plan. We call
such a representation an explanation of the plan.

This former requirement is easy to meet – one can simply depict
the paths taken by the agents. Unfortunately, the paths suggested
by the plan may well intersect, even when the agents do not collide
(see Figure 1a). Thus, a single picture of the paths does not su�ce
for the supervisor to understand the plan. At the other extremity,
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one could display a sequence of images or a video of the agents
taking their paths. While it is possible to use video in order to
verify the plan, it is di�cult for a human observer to verify that no
two agents collide, unless the video is played very slowly, or the
sequence of images is examined very carefully.

In this work, we suggest a novel approach for explaining plans to
human supervisors by means of disjoint decompositions. Intuitively,
we decompose the plan for the agents into time segments such
that, within each time segment, the paths taken by the agents are
disjoint. Then, we display each time segment as a separate picture.
In Figure 1, we demonstrate such a decomposition of a plan into
three parts.

R����� 1.1. The reader may notice that verifying no two lines
intersect in a picture can be done very quickly. Indeed, the identi�-
cation of line intersections is done very early in the cognitive process
(namely in the primary visual cortex [18, 35]).

R����� 1.2. Formally, our framework in Section 2 places no con-
straint on the environment. However, since we output pictures of the
paths, our explanation scheme is more relevant to two dimensional
plans. See Section 6 for a discussion about three dimensional explana-
tions.

Crucially, our explanations can be quickly veri�ed, and so can
be used by a supervisor in real-time to make a decision.

What is an Explanation?
The notion of “explanation” is not well de�ned and is hugely de-
pendent on the problem at hand and on the user to whom the
explanation is given. For example, in [23], visualization is used to
explain the result of certain Machine Learning algorithms, that
often come up with complicated classi�ers. In this case, the expla-
nation is given to a human, and therefore visualization is helpful.
In contrast, in [2], o-minimal sets are given as an explanation for
the non-termination of linear loops. These explanations are useful,
since it is decidable to check their correctness, whereas the general
non-termination problem is not known to be decidable. However,
actually checking the correctness is not necessarily tractable, so
the user in this case is not a human, but rather a computer with
unlimited time. This work is closer to [23] in that the user to whom
we explain is a human, but instead of classi�cation, the problem at
hand is MAPF.

In order tomake the notion of explanation slightly more concrete,
we view it in the following way. Consider a decision problem P . An
explanation scheme for P is a mechanism that outputs, for a given
input I , some information called an explanation, or outputs that no
explanation is found. Then, we can reason about three properties
of the explanation scheme:

(1) Soundness: If an explanation exists, then I is a yes-instance.
(2) Completeness: If I is a yes-instance, then an explanation

exists.
(3) Simplicity: An explanation is easy to �nd (if it exists) and to

verify.
Note that the simplicity requirement is not formal; it is rather
context-dependent. If the scheme is both sound and complete, then
the explanations are in fact proofs, and if in addition they are simple,
then the problem P itself would be simple to solve a priori. Thus,

these properties hold simultaneously only in very naive problems.
Challenge arises when di�erent combinations of the above proper-
ties are considered with their quantitative tuning for explanations.

For example, in this work, our explanation scheme is sound but
has a quantitative tradeo� between simplicity and completeness.
That is, on one hand, the fewer plan segments (pictures) we output,
the simpler the explanation is, but on the other hand, we can explain
fewer plans using just a few pictures, so the scheme is less complete.
If we allow an arbitrary number of pictures, we can explain any
plan (so the scheme is complete), but the explanations are no longer
simple.

Related Work
In recent years, there has been signi�cant e�ort towards providing
explanations for problems in AI and in machine learning. Such
works are sometimes grouped under the Explainable Arti�cial Intel-
ligence (XAI) title [10, 17]. The goal is to provide some meaningful
interpretation for the results of algorithms, such that users of the
algorithms (although not necessarily human users, as discussed
above) are able to gain insight into the result.

Concrete examples of explanations take on various forms. In [11],
explanations are given by analyzing possible alternative plans,
where the space of alternative plans is determined by certain “in-
teresting properties” given by the user. Then, explanations of plans
are contrasive, in that when a user asks e.g., “why does plan �

start with A”, then answer is given in terms of properties that are
violated if A is not taken. In [19], explanations for plans are given
by a minimal set of di�erences between the proposed plan and a
plan suggested by the user. This type of explanation is often more
detailed, as it can be given in terms of comparison with a given
alternative. A more uni�ed approach is taken in [15], where sev-
eral types of explanation queries are allowed. There, the user may
change the plan in certain ways, and the planner should explain
why the original plan was better, or re-plan.

Paper Organization
In Section 2, we introduce our explanation scheme for MAPF,
namely vertex-disjoint decompositions, and state the relevant algo-
rithmic problems. In Section 3, we show that �nding optimal expla-
nations for existing plans can be done e�ciently, whereas planning
for MAPF problems with simple explanations is NP-Complete. In
addition, we study the tradeo� between time-optimal plans and
plans with simple explanations.

In Section 4, we consider the continuous version of explainable
MAPF and suggest an approach to tackle it via discretization. We
discuss the tradeo� that arises in this setting between explainability
and degree of re�nement. In Section 5, we present some experi-
mental results, both in the discrete and the continuous settings. In
particular, in Section 5.1, we demonstrate the practical di�culties
that arise in implementing a search-based algorithm for planning
with explanations. We conclude with future research directions in
Section 6.

2 PROBLEM FORMULATION
We start by giving the basic de�nitions used throughout the paper,
followed by the formulation of the problems at hand.



Consider a directed graph G = hV ,Ei. A path in G is a sequence
� = �1 . . .�m such that for all 1  i < m either (�i ,�i+1) 2 E

or �i = �i+1 (intuitively, agents are allowed to wait in place). Let
�1 = �1 . . .�m1 and �2 = u1 . . .um2 be paths in G. We say that �1
and �2 are non-colliding if the following hold:

(1) �i , ui for all 1  i  min{m1,m2} (i.e., no vertex colli-
sions)1,

(2) (�i ,�i+1) , (ui+1,ui ) for all 1  i < min{m1,m2} (i.e., no
vertex swapping).

We say that �1 and �2 are vertex disjoint if

{�0, . . . ,�m1 } \ {u0, . . . ,um2 } = ;.
We lift these de�nitions to a set of paths by requiring that they hold
pairwise.

Let P = {�1, . . . ,�k } be a set of non-colliding paths of length at
most T . A vertex-disjoint decomposition of P is an ordered list ` of
natural numbers 1 = t0 < t1 < . . . < tr = T + 1 such that for every
0 < i  r , the paths {�j [ti�1, ti � 1]}kj=1 are vertex-disjoint (where
�j [a,b] refers to the in�x of �j between indices a and b, and we
cut-o� the path if the indices are out of bound). We refer to r as the
index of `. The minimal decomposition index of a vertex-disjoint
decomposition of P is referred to as the index of P .

R����� 2.1. Consider a set of non-colliding paths P of length T ,
where the length of P is the maximal length of the paths in P . A trivial
vertex-disjoint decomposition of P is the list 1, 2, . . . ,T + 1. Thus, a
vertex-disjoint decomposition always exists, and the index of P is at
most T .

Given k agents on graphG and two lists s1, . . . , sk and �1, . . . ,�k
of source and goal vertices, respectively, a plan is a set of non-
colliding paths P = {�1, . . . ,�k } such that �i leads agent i from
si to �i for all 1  i  k . The classical Multi Agent Path Finding
(MAPF) is as follows.

P������ 1 (MAPF). Given a graphG = hV ,Ei and lists s1, . . . , sk
and �1, . . . ,�k , where si ,�i 2 V for all 1  i  k , �nd a plan for the
agents.

Note that this is a search problem. The decision version of the
problem asks whether there exists such a plan, and the threshold
version asks whether there exists a plan of length at most T . In
addition, the optimization version asks to �nd the minimal-length
plan.

The introduction of explanations gives rise to two problems. The
�rst problem is to compute a minimal decomposition of a given
plan, which is formally stated below.

P������ 2. Given a graph G = hV ,Ei and a set of non-colliding
paths (i.e., a plan) P , compute a vertex-disjoint decomposition of P
with minimal index.

Recall that by Remark 2.1, a vertex-disjoint decomposition always
exists, so Problem 2 is well de�ned.

While a solution for Problem 2 may give us the “best” expla-
nation for a given plan, there may exist other (possibly “worse”)

1Since we only consider indices up tomin{m1,m2 }, then, intuitively, once the goal is
reached, the agent “disappears”.

plans that o�er better explanations. Thus, we consider the more in-
volved problem of planning with explanations in mind. The formal
statement of this problem is as follows.

P������ 3. Given a graphG = hV ,Ei, lists s1, . . . , sk and�1, . . . ,�k
of source and goal vertices, and a parameter r 2 N, �nd a plan P for
the agents with the minimal vertex-disjoint decomposition index of at
most r , or answer that no such plan exists.

3 EXPLANATIONS OF DISCRETE MAPF
In this section, we study vertex-disjoint decompositions. We start
by addressing Problem 2.

3.1 Computing Minimal Vertex-Disjoint
Decompositions

Our �rst result is that computing a minimal-disjoint decomposition
can be done e�ciently.

T������ 3.1. Problem 2 can be solved in polynomial time.

P����. Let P = {�1, . . . ,�k } be a given plan, and let T denote
its length. Our algorithm for computing a minimal vertex-disjoint
decomposition proceeds in iterations, as follows. Set t0 = 1. Then, at
iteration i , the algorithm computes the maximal number ti  T + 1
such that {�j [ti�1, ti ]}kj=1 is a set of vertex-disjoint paths. That is,
we greedily keep following the paths until there is a collision, and
then we start a new segment in the decomposition. Clearly, this
algorithm can be implemented in polynomial time since, in every
iteration, we only need to maintain a set of disjoint vertices, and
we need to make only a single pass on P .

We turn to prove the correctness of this algorithm. Let 1 = t0 <
. . . < tr = T + 1 be the decomposition found by our algorithm.
Consider some r 0 and a decomposition 1 = t

0
1 < . . . < t

0
r 0 = T + 1

of P . We show that r 0 � r .
To this end, we claim that, for every 0  i  r

0, it holds that
t
0
i  ti . That is, the “endpoints” of the decomposition found by our
algorithm are at least as high as those of the primed decomposition.
We prove this by inductions over i . For i = 0 this holds by de�nition
since t0 = t

0
0 = 1. Next, consider 1  i + 1  r

0; then, by the induc-
tion hypothesis, t 0i  ti . Now, by the de�nition of our algorithm,
ti+1 is the maximum such that {�j [ti , ti+1]}kj=1 is vertex disjoint.
In particular, it must hold that t 0i+1  ti+1, since {�j [t 0i , t 0i+1]}kj=1 is
vertex disjoint as well, and t 0i  ti .

The inductive argument implies that r 0 � r . Therefore, our
decomposition is indeed minimal. ⇤

The tractability of Problem 2 implies that explaining the results
of MAPF can be readily incorporated into existing MAPF solvers.

3.2 Planning for Explainability
In this section, we study the more involved Problem 3, where we
wish to �nd a plan that admits a small decomposition. In order to
state complexity results, we address the decision version of Prob-
lem 3, namely:

P������ 4. Given a graphG = hV ,Ei, lists s1, . . . , sk and�1, . . . ,�k ,
and a parameter r 2 N, decide whether there exists a plan P for the
agents with index at most r .



Observe that when r = 0, Problem 4 amounts to decidingwhether
there are vertex-disjoint paths for the agents, which is NP-Hard
in several settings. Speci�cally, by [25, 26], we have the following:

L���� 3.2. Problem 4 is NP-Hard, even under each of the follow-
ing restrictions:
• G is undirected and planar [25]
• G is directed and k = 2 (i.e., there are only two agents) [26]

To provide a matching upper bound, we have the following:

L���� 3.3. Problem 4 is in NP.

P����. In [28], it is shown2 that the shortest plan has length
B = O (n3) (where n = |V |). Thus, if r > B, then deciding whether
there is a planwith index at most r is equivalent to decidingwhether
there exists a plan of length at most r at all. Indeed, by splitting the
plan into r segments of a single timestep, we obtain a decomposition.
Since the latter problem is clearly in NP, this case is handled.

Next, we consider the case where r < B. A priori, it could be
the case that, within each decomposition segment, the paths are
very long (i.e., super-polynomial), rendering the plan very long. We
show that this is not the case.

Consider a segment in a decomposition of a plan. Since the
agents are allowed to stay in place, we can assume that in all paths
within the segment, the only cycles are caused by staying in place.
Indeed, replacing larger cycles by staying in place will keep the
paths disjoint.

Next, observe that agents gain nothing by staying in place within
a segment unless this is done so that other agents can �nish travers-
ing their (disjoint) path. Thus, staying in place for all agents can be
delayed to the last vertex of the segment. Finally, we can omit any
transition where all agents stay in place.

We conclude that the length of each segment is at most O (n),
since it comprises simple paths with possible waiting at the end
of the segment, so that all agents �nish their segments. Thus, the
overall length of a minimal plan is O (n · r ) = O (n4).

Since verifying that a deocmposition is vertex-disjoint can be
done in polynomial time in the length of the plan, and we have
shown that if there is a plan, there is also one of polynomial length,
we conclude that the problem is in NP, ⇤

By combining Lemmas 3.2 and 3.3, we obtain the following the-
orem.

T������ 3.4. Problem 4 is NP-Complete.

3.3 Explainability Versus Length
We now turn to study the tradeo� between plans that admit a small
decomposition index and plans with small lengths. Traditionally,
when solving the MAPF problem (Problem 1), one looks for plans
that minimize the maximal time it takes an agent to reach its goal
(i.e., length of the plan). As we now show, there is a potential
tradeo� of the length and the minimal decomposition index of a
plan.

Example 3.5. Consider the setting depicted in Figure 2. The lists
of source and goal nodes are s1, . . . , sk and �1, . . . ,�k , respectively.
2The model in [28] allows the agents to stay in place, as we do. See Section 6 for the
model where staying in place is not allowed.

s1

...
sk

v1 v2 . . . vn

g1

...
gk

Figure 2: Setting for Example 3.5

Clearly, there is a (minimal-length) plan for all the agents to reach
their goal within O (n + k ) time steps by traversing path �1, . . . ,�n
“back to back”. However, the decomposition index of such a plan is
O (n + k ), since the disjoint parts are of size 1 (i.e., at every step the
paths intersect). However, if each agent waits for the previous one
to reach its goal, the decomposition index is O (k ), but the length is
O (n · k ).

R����� 3.6. One recent approach of tackling the MAPF problem
is using highways [6], which are, roughly speaking, “preferable paths”
that were successfully taken by other agents. Example 3.5 points to
an intriguing aspect of disjoint decompositions: if agents want to
follow the same path, they can only do so in separate segments of the
decomposition. Thus, highways are intuitively bad for explainability.
In Section 6.1, we discuss possible approaches to combine highways
and disjoint decompositions.

4 EXPLANATIONS OF CONTINUOUS MAPF
In the continuous setting, each agent moves in the environment
according to the following dynamics:

ẋ = f (x ,u), x 2 X ✓ Rn , u 2 U ✓ Rm (1)

where X and U are the state and input spaces, respectively, and
f : X ⇥U ! X is an integrable and possibly nonlinear function3.

Note that while we consider a two-dimensional environment
W ✓ R2 in this work, the state space of the robot is typically of a
higher dimension, as it accounts for states such as velocity, heading
angle, etc.

Traditionally, motion planning for continuous systems is studied
for one agent with a start (source) and a goal state. The motion
planning problem asks to compute a collision-free continuous tra-
jectory in X from the start state to goal that respects the dynamics
of the agent in (1). This problem is NP-Hard [9] in the best case
and undecidable [3] in the worst case. To deal with such a di�-
cult problem, especially, in a multi-agent setting with explanations,
we take inspirations from formal control synthesis literature (e.g.,
[20, 22]) and approach the problem by abstracting the evolution
of the agent in its state space to a discrete (�nite) graph with sim-
ulation relation. Then, a discrete planner can be applied to this
graph with the guarantee that the generated paths on the graph
are correctly executable by the continuous dynamics.

To construct this abstraction graphG = hV ,Ei, we �rst partition
the environment into a set of �nite regions, which induces a dis-
cretization in the state space X . We then associate each discrete
region with a vertex in V of graph G. This discretization can be
achieved using a grid, triangulation, voronoi tessellation etc. We
3For readability, we assume all agents have the same dynamics, but this assumption
can be easily dropped.



call two regions neighbors if they share a facet. To enable transitions
between neighbors �i ,�j 2 V , a motion plan that guarantees the
trajectory does not exit �i [�j while transitioning from �i to �j is
required. Such a motion plan can be obtained using sampling-based
(e.g., [21]) or control-based techniques. The advantage of sampling-
based methods lies in their ease of handling complexity dynamics,
but the obtained trajectories can have di�erent durations for dif-
ferent pairs of neighbors. In the multi-agent setting, it gives rise
to the issue of o�set between continuous time and discrete clock
of agents after each transition; hence, requiring synchronization
through communication between agents. To avoid this problem,
we use a control-based approach, namely control symbols [5].

A control symbol ui j = (hi j , � ) consists of a feedback controller
hi j : X ! U , which is designed to drive the system from the
center of �i to the center �j , and a termination rule (trigger) � :
R�0 ! {0, 1} that indicates when to terminate the execution of hi j .
We assume that hi j is able to stabilize the system at the center of
�j , meaning that the system is able to remain at the center of �j
under controller hi j after getting there. The construction of such a
controller for various dynamical systems is detailed in [1]. If such a
controller is feasible, then an edge directing node �i to �j is added
to the graph G.

To avoid the issue of communication and enable automatic syn-
chronization between agent actions, we design � as follows. Let �t
to be the maximum time duration needed forhi j to drive the system
to an �-distance to the center of �j for all neighbors �i ,�j 2 V . We
design � to �re exactly when �t is reached for all control symbols
(i.e., � = � (t � �t ), where � is the Dirac function). With this design
of control symbols ui j , all agents are guaranteed to have completed
their transits to their one-step target regions and synchronized by
the time of switching to the next control symbol.

The constructed graph has a simulation relation with the contin-
uous systems. That is, the continuous agents are able to simulate
every behavior produced on graph G. The converse, however, is
not true since the continuous agents can have behaviors that the
abstraction G cannot simulate. Therefore, our explanation scheme
is admissible for the technique above, in the sense that a disjoint
decomposition in the discretization translates to a disjoint discretiza-
tion in any continuous plan that implements the discrete one. Thus,
intuitively, we can readily use our discrete methods of Section 3 in
order to provide explanations for continuous MAPF.

A central challenge in the continuous setting is how to choose an
appropriate discretization of the environment. Speci�cally, the size
of the cells set a tradeo�: a �ner discretization results in a larger
graph, but allows more plans. This issue is still an open problem
in motion planning and control, but it has signi�cant e�ect on the
explainability of plans, as we demonstrate below.

Example 4.1. Consider the environment depicted in Figure 3a.
The two agents start in room A and need to reach room B. If the
discretization is coarse, the corridor may be discretized as a single
path of nodes (Figure 3b). Then, similarly to Example 3.5, the fastest
plan is for the agents to take the corridor back to back, but this
plan has a large decomposition index, whereas the plan with the
minimal decomposition index, which is 2, requires one agent to
wait in room A until the other has reached room B.

A B

(a) Continuous Setting

A B

(b) Coarse Discretization

A B

(c) Fine Discretization

Figure 3: Two rooms connected by a corridor (the dark area
is blocked). The circles and stars are the agents’ start and
goal locations, respectively.

However, if the discretization is �ner, the corridor corresponds
to two paths of vertices (Figure 3c), in which case there is a plan
that is both short and has decomposition index 1, namely having
both agents move through the corridor side by side.

Note that in fact, the fastest plan is obtained already in the coarse
discretization, meaning that good explanability may actually come
at the cost of not only giving up the fastest plan, but also re�ning
the discretization after the fastest plan was found 4.

In Section 5, we discuss experimental results regarding the lengths
of plans and the degree of re�nement.

5 EXPERIMENTAL RESULTS
In this section, we present some experimental results. Our experi-
ments are divided into two settings: discrete and continuous. In the
discrete setting, we propose a fairly naive implementation of A⇤ to
solve Problem 3, and discuss the practical challenges involved in
the implementation. Then, using benchmarks taken from [30], we
examine the tradeo� between explainability and length of plans.

In the continuous setting, we apply the methods suggested in
Section 4 to discretize an environment and study the tradeo� of
explanations, length of plans, and degree of re�nement.

In the spirit of this work, our experiments are aimed at study-
ing the notion of disjoint decompositions, rather than optimizing
MAPF. Thus, our runtimes are always higher than state-of-the-art
algorithms for MAPF.

4The scrupulous reader might notice that the example can be simpli�ed by having
only the corridor, without the rooms. We added the rooms to emphasize the corridor.



5.1 Finding Decompositions Using A⇤

One of the traditional approaches for solving MAPF (Problem 1) is
search based, usingA⇤ with various heuristics and optimizations [12,
16, 29]. The di�culty in search-based methods lies in the size of
the state space, which is |V |k , where k is the number of agents.
Indeed, we must keep track of all the agents simultaneously to
avoid collision. Notably, the state space grows exponentially in the
number of agents, but only polynomially in the size of the graph.

Unfortunately, Problem 3 gives rise to another blow-up. Recall
that within each segment of the decomposition, the paths taken by
the agents are disjoint. Thus, in order to perform a search-based
algorithm, each state must include, apart from the location of each
agent i , the history of the states visited by Agent i in the current
segment. Thus, each state encodes the current state of each agent i ,
as well as a set Si ✓ V . The overall size of the state space is thus
O ( |V |k · 2 |V | ·k ), which is exponential both in the number of agents
and the size of the graph. This can be slightly improved by noticing
that the Si are disjoint, and thus the subsets can be represented
by a function f : V ! {1, . . . ,k,?}, so that f (� ) is the agent that
had visited � in the current segment (where f (� ) = ? means that
� has not been visited yet). In this view, the state space is of size
O

⇣
|V |k · (k + 1) |V |

⌘
, which is still exponential in both k and |V |.

The analysis above implies that even for 2 agents, applyingA⇤ to
Problem 3 is challenging. In Section 6, we discuss possible scaling
solutions for search-based analysis, as well as other approaches.

5.2 Case Study: Discrete Domain
Our �rst case study concerns the discrete domain, where we ex-
amine the tradeo� between the length of plans and their mini-
mal decomposition on standard benchmarks taken from [30]. Each
benchmark scenario consists of a graph, and start and goal nodes
for many agents. We examined two parameters for each scenario:
the number of agents, and the maximum allowed decomposition
index. Thus, for each scenario, we have tested an increasing number
of agents, and a decreasing maximal decomposition index.

As described in Section 5.1, the exponential blowup both in the
size of the graph and in the number of agents makes the algo-
rithm prohibitively ine�cient, with several instances timing out or
running out of memory. Thus, our results are based on instances
for which the algorithm terminated. Our code can be found in
https://github.com/explainable-mapf/explainable-mapf.

In Table 1, we report our results. We observe two phenomena:
�rst, in most cases the minimal index decomposition is not signi�-
cantly longer than the shortest plan. This suggests that a smaller ex-
planation is available without sacri�cing much in length. Nonethe-
less, in some cases there is a signi�cant increase in length, speci�-
cally in the “room-32-32-4-even-2” scenario. This typically occurs
in the presence of corridors, that elicit behaviors as demonstrated
in Example 3.5.

The second phenomenon is that the decomposition index of
the shortest plans is not much higher than that of the minimal
index plans. This is encouraging, as it means that often we can
plan without explanations in mind, and compute the explanations
after planning. As we proved in Section 3, the latter problem can
be solved in polynomial time.

Scenario ag Shortest Min. index Time
ind Len ind Len (sec)

empty-32-32-even-4 4 2 45 1 53 10.1
random-32-32-10-even-1 4 2 41 1 47 3.6
random-32-32-10-even-1 5 2 41 1 47 3.3
random-32-32-10-even-3 3 3 43 2 45 0.1
random-32-32-10-even-3 4 3 43 2 45 0.1
random-32-32-10-even-3 5 4 43 3 53 0.3
random-32-32-10-even-3 6 4 43 3 53 1.1
random-32-32-10-even-3 7 4 43 3 53 4.4
random-32-32-10-even-3 8 4 43 3 53 12.9
random-32-32-10-even-4 3 3 57 2 61 0.1
random-32-32-10-even-4 4 3 57 2 61 0.2
random-32-32-10-even-4 5 3 57 2 61 0.2
random-32-32-10-even-4 6 4 57 3 61 0.1
random-32-32-10-even-4 7 4 57 3 61 0.3
random-32-32-10-even-4 8 4 57 3 61 1.4
random-32-32-10-even-5 7 4 46 3 64 15.9
random-32-32-20-even-1 6 4 57 3 59 8.4
random-32-32-20-even-3 6 2 27 1 37 5.9
random-32-32-20-even-3 7 2 27 1 37 3.1
random-32-32-20-even-5 4 2 43 2 45 0.1
room-32-32-4-even-1 2 2 46 1 48 0.1
room-32-32-4-even-1 3 2 46 1 76 0.1
room-32-32-4-even-2 4 2 20 1 31 50.1
room-32-32-4-even-2 5 2 20 1 33 4.65

Table 1: Discrete benchmark results. The “scenario” column
refers to the benchmarks in [30], “ag” states the number of
agents. The “shortest” and “min index” columns refer to the
shortest plan and the plan withminimal index found by our
algorithm, where for each plan we report the index and the
length.

5.3 Case Study: Continuous Domain
Next, we demonstrate our explanation scheme on agents with con-
tinuous dynamics. To show the strength of our abstraction tech-
nique, we assume agents with second-order unicycle dynamics
given by

ẋ = � cos� , �̇ = � sin� , �̇ = u1 �̇ = u2,

where x and � are the position, � is the heading angle, and � is the
speed of the agent. The control input u1 and u2 are the acceleration
and turning rate. The considered environment is depicted in Figure
4.

We considered three disk-shaped agents, each with a source
and goal region (shown as gray boxes and denoted by si and �i
for agent i in Figure 4). To discretize this environment, we used
uniform grids of width 2, 1, and 0.5. If a cell of a grid overlaps with
an obstacle, the whole cell is rendered obstacle. To complete the
abstraction, we designed control symbols (hi j , � ) as follows.We �rst
chose controllers u1 = ū1 cos� + ū2 sin� and u2 = ū1 sin �+ū2 cos �

� ,
which lead to feedback linearization of the dynamics. Then, we
used standard technique (i.e., LQR feedback control) to design ū1
and ū2 to stabilize the system around any point in space, satisfying



Figure 4: Environment for continuous case study. The source
and goal regions for agent i 2 {1, 2, 3} are indicated by gray
rectangles and denoted by si and �i , respectively.

the requirement onhi j . The trigger � is the maximum time duration
for hi j to drive the system between all �i and �j neighbors.

The results are shown in Table 2, and the continuous plans
that correspond to the minimal decomposition plans are given in
Figures 5–7.

Grid width Min. length Min. index
ind Len ind Len

2 7 38 3 40
1 4 30 2 31
0.5 8 23.5 2 25.5

Table 2: Continuous case study results. The “width” col-
umn refers to the width of the discretization. The remain-
ing columns are similar to Table 1. Note that the reported
lengths are in continuous length units, rather than discrete
steps.

As can be seen from Table 2, the minimal index plans are not
signi�cantly longer than the shortest plans. However, there is a
signi�cant gain in the decomposition index. Moreover, we see that
the degree of re�nement does e�ect the decomposition: the coarse
discretization achieved longer plans and incurred a higher decom-
position index.

A more detailed examination of the setting shows that while
the width 1 discretization already allows for a decomposition of
index 2 (Figure 6), the �ner 0.5 discretization allows the agents to
take the smaller corridor, and hence achieve shorter plans. This,
however, incurs a signi�cant increase in the decomposition index,
since we get the behavior of Example 4.1. Nonetheless, by utilizing
both corridors, we can achieve a minimal decomposition with a
relatively short plan (see Figure 7).

We conclude that, as expected, re�ning the discretization allows
for shorter plans, and smaller decompositions. Surprisingly, there
is hardly any lengthening in plans when searching for minimal
decompositions. This suggests that it is worthwhile to plan for
minimal decompositions while discretizing to attain short plans.

6 DISCUSSION AND FUTUREWORK
In this work we have laid down principles for devising an explana-
tion scheme for algorithms. We demonstrate these principles in the

context of MAPF, where we devise an explanation scheme that is
sound, and o�ers a tradeo� between completeness and simplicity.

We have shown that merely explaining the result of existing
MAPF algorithms is tractable, and in fact can be done greedily. This
implies that our scheme can be readily incorporated in existing
frameworks. Moreover, our experimental results show that the
decomposition index for shortest plans is, in practice, often not
signi�cantly higher than the minimal decomposition index.

We have shown that the “deeper” problem of �nding plans that
admit a short explanation is NP-Complete, and that solving it
using search-based methods introduces a blowup in the state space
that is not present in traditional MAPF.

In addition, we showed that there is a potential tradeo� between
the length of a plan and the length of an explanation for it, meaning
that longer plans sometimes have shorter explanations, and vice-
versa. Finally, we also demonstrated that the problem of MAPF with
explanations in the continuous setting is very hard. Through means
of abstraction, it is possible to overcome local motion planning and
synchronization issues and employ discrete planners. However, the
choice of discretization, which is non-trivial, has some e�ect on the
explanations and plan lengths.

6.1 Future Work
We now turn to discuss some future research directions concerning
explainability.

Optimization. Since the focus of this work is the introduction of
an explanation scheme for MAPF, we have used naive implementa-
tions in our experiments. However, state-of-the-art algorithms o�er
many optimizations that might be adaptable to output explanations
as well. As we have observed in 3.6, the highway method of [6]
stands somewhat in contrast with our notion of disjoint decom-
position. One possible combination of highways and explanations
could rely on identifying “wide” highways, that allow agents to
travel in parallel. These admit shorter explanation, and also allow
for shorter plans.

Another optimization technique that may prove useful is the
following simple observation: a plan has a decomposition with
m segments, if it can be broken intom disjoint plans. Thus, one
approach to �nd a plan with a decomposition of indexm is to �nd
m�1 con�gurations for the agents, such that there are disjoint plans
from one con�guration to the next. Then, we can use algorithms
for �nding disjoint paths. While the latter problem is still NP-
Complete, there are some works concerning it [8, 14, 27], which
may shed new light on MAPF.

A potentially promising approach is to formulate MAPF with
explanations as a SAT problem. SAT/SMT solvers have proved to
have some success in handling MAPF [31, 32, 34, 36]. Preliminary
experiments we conducted show that a naive encoding of Problem 3
performs very badly with SAT solvers. However, it is possible that
using state-of-the-art techniques for solving MAPF with SAT/SMT
solvers can also work in our setting.

Sampling-based Planners. In our work on the continuous set-
tings, we based our approach on an abstraction technique, which
lifts the problem to the discrete domain. This greatly simpli�es the
problem. However, as discussed in [21], the advantages of such
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Figure 5: Decomposition plans for a discretization of width 2.

(a) Part 1 (b) Part 2

Figure 6: Decomposition plans for a discretization of width 1.

(a) Part 1 (b) Part 2

Figure 7: Decomposition plans for a discretization of width 0.5.

methods come at the cost of sacri�cing completeness since these
abstractions typically hold only a simulation relation with the con-
tinuous system, rather than bi-simulation. In addition, the problem
of discretization and its e�ects on explanations and plan lengths is
embedded in such approaches. An interesting future direction is
to formulate Problem 3 directly in the continuous domain. In this
setting, the explanations will require the projection of the agents’
trajectory segments onto the environment to be non-intersecting.
Given recent performance boosts in motion planning for multi-
agent systems through sampling-based techniques, a promising
direction would be to explore these methods to generate plans with
explanations in the continuous domain as an alternative to the
discretization and abstraction approaches.

Disjoint Decompositions in 3D. Our work focuses on the two
dimensional domain, where paths can be depicted in pictures. In
the three dimensional setting, a new challenge arises, which is to

display the disjoint paths. One naive way of solving this is to split
the three dimensional space into layers, and treat each layer as a
two dimensional space. This approach is reasonable in e.g. air tra�c
control, where �ying space is already treated in this fashion.

However, in settings such as UAVs, this is less practical. There-
fore, we suggest the following extension to our explanation scheme:
instead of outputting only disjoint segments, we output for each
segment also a viewpoint, from which the projection of this seg-
ment is disjoint in the two-dimensional sense. Thus, an explanation
comprises disjoint segments, with a possibly di�erent viewpoint
of each segment. Computing such viewpoints is a challenge that is
out of the scope of this work, and is thus left for future research.
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