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Abstract— There are many applications where robots have

to operate in environments that other agents can change. In

such cases, it is desirable for the robot to achieve a given high-

level task despite interference. Ideally, the robot must decide

its next action as it observes the changes in the world, i.e.

act reactively. In this paper, we consider a reactive planning

problem for finite robotic tasks with resource constraints. The

task is represented using a temporal logic for finite behaviors

and the robot must achieve the task using limited resources

under all possible finite sequences of moves of other agents.

We present a formulation for this problem and an approach

based on quantitative games. The efficacy of the approach is

demonstrated through a manipulation case study.

I. INTRODUCTION

With recent advances in robotics technology, robots to-
day have incredible capabilities to perform complex tasks.
Such capabilities, however, are generally limited to static
environments [1]–[4]. Major challenges arise when a robot
attempts to execute tasks with similar complexity in a dynamic
environment that involves other agents. For example, a robot
waiter needs to handle the changes to the environment caused
by humans. In these scenarios, the robot is expected to achieve
high-level tasks despite interference. Thus, classical robot
planning that only considers a single sequence of actions
is insufficient. The robot must instead perform the task
reactively, i.e., decide on the next action as it observes the
changes in the world [5]–[10].

Another dimension of difficulty emerges when considering
resource constraints such as time or energy [11], [12]. For
instance, a robot waiter must serve customers within a
reasonable time. Ideally, robots need to account for their
remaining resource budget in their choice of the next action
to avoid depleting its resources before completing the task.

In this work, we formulate a problem to demonstrate the
above challenges in order to understand the methodologies
needed to address them. We consider the scenario where a
robot needs to achieve a finite high-level task when a human
can interfere. In particular, the human is agile enough to
interfere multiple times while the robot performs a single
action, but the human can only interfere a bounded number
of times. The robot must complete the task despite the
interference, while using a limited amount of resources. To
illustrate the setting, consider the following simple example:
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Fig. 1: The cup-stacking problem

Cup-stacking example: A robotic arm is to complete
the cup-stacking challenge, where it has to stack
cups in a pyramid in the middle of the table (shown
in Figure 1). The task requires that a cup in a higher
row must not be placed unless both its supporting
cups are in place. In this challenge, a human may
interfere and move any of the cups at will up to 5
times, and the robot must be able to complete the
task with less than 3000 units of energy.

In this example, the robot must move several cups to
complete the cup-stacking task, but the human can interfere
with the task by moving the cups. If the robot does not
react to the changes made by the human, it may violate its
task requirement by placing a cup in the higher row when
a base is already removed. The robot may also deplete its
energy budget if all human moves are not carefully considered.
Therefore, the robot must have a strategy that chooses its
action according to not only the task but also the human’s
possible actions.

In the general case, finding a strategy for reactive tasks
with resource constraints is difficult. In this paper, we show
that if we can obtain a structure called an abstraction that
captures the planning domain and a linear temporal logic on
finite traces (LTLf) [13] formula that captures the task, then
we can produce a strategy that guarantees the completion of
the task in this domain without exceeding the resource limit.

The contributions of this paper are three-fold. First, we
define the problem of reactive synthesis for finite tasks with
resource constraints, a problem previously unstudied. Second,
we present a framework for finding a winning strategy for
such problems under the assumption that an abstraction is
provided. Finally, we use a proof-of-concept manipulation
example to show how robotics problems can be solved using
this framework.

The structure of the paper is as follows. In Section II, we
discuss previous work related to the problem above. In Section

To appear in the Proceedings of the 2017 IEEE Int. Conf. on Intelligent Robots and Systems (IROS 2017)



III, we define the synthesis problem and the inputs required
for us to solve the problem. In Section IV, we describe how
we solve the reactive synthesis problem by combining the task
with the abstraction to generate a quantitative game played
between the robot and the human. In Section V, we present
a case study where the cup-stacking problem is expressed
using our formulation, and solved using our approach. Finally,
we conclude in Section VI with a discussion on required
properties for a scenario to be captured by an abstraction.

II. RELATED WORK

Though the problem above is previously unconsidered,
several important aspects of it have been studied in the field.
Here we discuss the relation between these previous work
and the problem studied in this paper.

Reactive synthesis has been studied extensively for mobile
platforms [5]–[8], [14]. In these works, the specification
language of choice is typically linear temporal logic (LTL)
or its fragment GR(1) [15], which describe infinite behaviors
such as surveillance and respondence to human requests. The
complexity for these works is in the infinite behavior of the
system, while in this paper we are interested in finite behavior
along with resource constraints.

Several works in reactive synthesis consider time con-
straints [9], [10]. The tasks in these works are defined by
satisfaction of properties (sub-tasks) within specific time
windows. These problems are challenging due to the complex
dynamics of the system. However, these works only reason
about time constraints, and their extensions to general resource
constraints that accumulate during execution is non-trivial.

There exist several works that consider finite tasks in
uncertain environments [16], [17]. These works use a fragment
of LTL called co-safe LTL [18] to specify such tasks. To deal
with environment changes, they take an iterative approach,
which replans every time a change is detected. With this
approach, the completion of the task cannot be guaranteed.
In this work, we guarantee the task is achieved despite the
changes in the environment.

This work is closely related to planning for nondeterminis-
tic systems [19]. In nondeterministic systems, unintended (but
modeled) events may occur at certain states during execution,
similar to human interference in this paper. Such events are
handled by constructing alternative plans from the points of
deviation. In this work, since the human could interfere from
any state, constructing alternative plans from every single
point during execution would be computationally intractable.

Generation of supervisory controllers for discrete event
systems (DES) is also closely related to synthesis for reactive
systems [20]. In DES, controllable and uncontrollable events
could occur depending on the state of the system, and
the objective is to remove controllable events to guarantee
satisfaction of certain properties [21]. This model of events
is similar to the turn-taking modeled in this paper. However,
for robot reactive synthesis, we need to choose exactly one
action for the robot in each state, as opposed to keeping a
maximal set of behavior.

In our effort to address the problem of reactive synthesis
with resource constraints, we capture the planning domain
with a discrete structure. This opens the door to solving the
problem using approaches from quantitative games. Previous
work in quantitative games [22], [23] largely focused on
infinite games, making direct application of their algorithms
to our problem difficult. Nonetheless, we adapt techniques
from [22] to solve our problem, and show that this is a
promising approach.

III. PROBLEM FORMULATION

The goal of this work is to synthesize robot behavior to
achieve finite reactive tasks without expending more than a
limited amount of resources. To do this, the user needs to
provide information regarding the planning domain as well
as the task. In this work, we assume the robot and human
operate in a domain that can be captured by a discrete graph
called an abstraction. The abstraction encodes a finite subset
of behavior by the robot and the human that is task relevant.
To solve this problem, we take as input 1) an abstraction
of the domain G, 2) a task specified as an LTLf formula f ,
3) a bound on resource allowed for the robot E, and 4) a
bound on the number of times the human may interfere K.
From these inputs, we wish to generate a strategy Str that
can guarantee the completion of the task. We now describe in
detail the input abstraction, how the abstraction is interpreted,
the input LTLf formula, and the output strategy.

A. Abstraction
We assume we are given as input a discrete structure called

the abstraction that captures the relevant parts of the planning
domain. This structure is inspired by our previous work [3].
In section V, we discuss in detail how such an abstraction can
be constructed using the cup-stacking problem as an example.
Here, we formally define the abstraction.

The abstraction is a graph G = (V,v0,As,Ae,FG,P,r),
where V is a finite set of vertices and v0 is the initial vertex.
Intuitively, each vertex in V encodes important information
regarding the state of the world. For example, in the cup-
stacking problem, a vertex in V encodes whether each cup
is in a location of interest to the task and whether the robot
gripper is aligned with any cup.

There are two sets of edges, As and Ae, where each as 2
As and each ae 2 Ae are deterministic functions from V to
V . These edges represent robot actions and human actions
respectively. If the world is currently represented by v, and the
robot takes an action as, the new state of the world would be
represented by the vertex as(v). In the cup-stacking example,
As would include opening and closing of the gripper and
moving the manipulator arm, while Ae would include the
human moving objects around. The mapping FG : V ⇥As!
R�0 is the resource cost map that tells us the amount of
resources needed in order to perform a robot action from a
particular state.

P is a set of boolean predicates that represent important
facts about the world that is relevant to the task. For example,
in the cup-stacking problem, one of the predicates could



represent whether a particular cup is at the top of the stack.
r : V ! 2P is the predicate function that outputs the set of
predicates that are true in the state represented by a vertex.

B. Understanding The Abstraction
We now describe the intuition behind the abstraction to

show that it indeed captures behavior we wish to consider.
An execution on the abstraction is a sequence of vertices
(v0,v1, ...,vn) 2 V ⇤ where v0 is the initial vertex, and for
each vi and vi+1, there is some action a 2 As[Ae such that
a(vi) = vi+1. We further restrict the evolution in the following
way. If both the human and the robot wish to take an action,
the human action will be taken. The robot edge is only taken
when the human decides to not take an action.

Recall that we wish to model executions where the
human may perform several actions while the robot performs
only one. By formulating execution in the manner above
with priority given to the human, the interaction between
simultaneous actions from the robot and the human is correctly
modeled. Consider the following scenarios from the cup-
stacking problem. Starting from a vertex v, the human moves
two cups using actions ae1,ae2, while the robot is moving
its arm using action as1. In this case, the graph evolves by
first the human actions, and then the robot action. Therefore
the resulting vertex is as1(ae2(ae1(v))), which is the correct
behavior. Consider another scenario where from a vertex v,
both the robot and the human are trying to grasp the same cup
with actions as and ae respectively. In this situation we must
consider two possible outcomes. If the human successfully
moves the cup with ae, then the robot’s action would fail.
This case is represented by the human choosing to take action
ae, and the robot action is ignored. If the human is slower
than the robot in grasping, the human action would fail, and
the robot action will succeed. This case is represented by the
human choosing to not take an action (yet), and allowing the
robot to perform as. In both cases, the execution is encoded
in the abstraction, and therefore must be considered when
finding a solution.

Though giving human actions precedence over robot actions
is uncommon, we find this appropriate for the scenario, as
the human is often agile enough that he/she could perform
multiple actions while the robot performs a single action.
This modeling also makes the robot conservative, forcing it
to consider all possible combinations of human actions.

C. LTLf Task Specification
To express a high-level task that requires many steps, we

reason over the truth value of properties in predicates P over
the duration of the execution. In this paper, we use linear
temporal logic on finite traces, LTLf, as the tasks we wish
to express are finite.

An LTLf formula f is defined over a set of boolean atomic
propositions P with the following syntax.

f = p | ¬y | y1^y2 | �y | y1U y2,

where p 2P is an atomic proposition, and y,y1, and y2 are
also LTLf formulas.

LTLf formulas reason over finite sequences of letters w =
(w0,w1,w2, ...,wn), called traces. Each letter wi 2 2P is the
set of atomic propositions true at timestep i. We say a trace
w satisfies a formula f at step i, written as w, i |= f when:

• w, i |= p iff wi contains p;
• w, i |= ¬y iff w, i 6|= y (negation);
• w, i |= y1^y2 iff w, i |= y1 and w, i |= y2 (conjunction);
• w, i |= �y iff w,(i+1) |= y and i < n (next);
• w, i |= y1U y2 iff there exists 0 j n such that w,k |=

y1 for all i k < j, and w, j |= y2 (until).
We say the trace w satisfies the formula f , w |= f , iff w,0 |= f .
We further include additional operators as shorthands:

• y1_y2 ⌘ ¬y1^¬y2 (disjunction);
• ⌃y ⌘ trueU y (eventually y);
• ⇤y ⌘ ¬⌃¬y (always y).
Note that the atomic propositions P only represent proper-

ties regarding the state of the world, and does not directly
represent human or robot actions. This allows the user to
focus on the task itself, rather than properties of the robot
and human when writing the formula, and thus reducing the
size of the formula.

D. Winning Strategy
Given an execution in the abstraction (v0,v1, ...,vn) 2V ⇤,

we can apply the r to each vi, and determine which predicates
are true along the execution. This produces a trace (w0, ...,wn)
where wi = r(vi). If at any point n during the execution, the
trace (w0, ...,wn) satisfies the formula that represents the task,
we say that the robot has achieved the task. This may happen
while the human has remaining moves, as the robot is not
obligated to wait for the human to use all moves available.
Other ways of modeling task completion is discussed in
Section IV-B.

During execution, the robot reasons over the events
observed so far, and chooses an action to take. A strategy
Str : V ⇤ ! As is a mapping that chooses a robot action to
perform given the execution so far. Under the assumption
that the human interferes at most K times, we say that Str is
a winning strategy for the task if, following the strategy Str
can guarantee the trace produced by the execution satisfies
the task f using resources not exceeding E.

E. Problem Definition
Given an abstraction graph G = (V,v0,As,Ae,FG,P,r), an

LTLf formula f over P, a maximum amount of resources
available E, and a bound on the number of human moves K,
find a winning strategy Str for the task.

Note that since we wish to find a strategy that guarantees
task completion under all possible allowed human behavior,
we view the human as adversarial. Discussion about other
semantics for human behavior exists in the literature, but it
is not a focus of this paper.

IV. SOLUTION

To solve the above problem, we first convert the LTLf
task formula into a deterministic finite automaton (DFA).
Then, we compose the DFA with the abstraction to construct



a quantitative game. We show that a winning strategy on
this game can produce a winning strategy for the synthesis
problem. Thus, the synthesis problem is reduced to finding a
winning strategy of the game. Finally, we use a winning set
construction to produce a strategy for the game and therefore
solve the synthesis problem.

A. Task DFA
From the LTLf formula f over atomic propositions P,

a deterministic finite automaton (DFA) Af = (Z,z0,S,d ,Z f )
can be constructed to accept exactly the traces that satisfy
the LTLf formula [13]. Here, Z is a finite set of states in
the DFA, with z0 as the start state, and Z f ✓ Z as the set
of final states. S = 2P is the alphabet of the LTLf formula.
d : Z⇥S! Z is the deterministic transition function.

Given a trace (w0, ...,wn), where wi 2 2P, we can produce
a sequence of DFA states (z0, ...,zn+1), where d (zi,wi) = zi+1.
If the last state zn+1 is a final state of the DFA, we say that
the DFA accepts the trace. The DFA Af accepts exactly those
traces that satisfy the formula f . Thus the paths from the
initial state z0 to the final states Z f in Af capture all the
different ways the task could be achieved. This translation is
PSPACE [13] in the size of the formula. Since the formula
only reasons over important properties of the task, and not
robot and human actions, the formula is typically small. We
then combine the DFA with the abstraction to capture such
physical constraints.

B. Quantitative Game
The abstraction graph G captures all the ways the robot and

the human can interact with the environment. The DFA Af
captures all the ways the task can be achieved. Additionally,
we have a bound on the number of human actions K and the
resource bound E. We define a structure P called the game
that captures all these inputs in a unified manner. The game
P contains all possible ways the robot can achieve the task
and all possible ways the human can interfere.

The game structure is defined as P =
(S,s0,S f ,As,Ae,FP,E), similar to [13], [22]. The set
of game states S =V ⇥Z⇥{0,1, ...,K} represent the state of
the world, the current state in execution, and the number of
human moves remaining. The number of states of this game
is linear in K, |Z|, and |V |. The initial state s0 = (v0,z0,K)
is constructed from the initial state of the world v0, the
initial state of the DFA z0, and the bound on human moves
K. The set of final states S f ✓ S consists of the states whose
DFA component is a final state, S f = {(v,z,k)|z 2 Z f }. Note
that a state can be a final state even if k 6= 0, as discussed
in Section III-D. If the task requires the robot to respond
to human actions after task completion, we can modify the
game by enforcing k = 0 for final states.

With an abuse of notation, As and Ae are ex-
tended from the abstraction to the game, by defin-
ing as((v,z,k)) = (as(v),d (z,r(as(v)),k), and ae((v,z,k)) =
(ae(v),d (z,r(ae(v)),k� 1). In other words, the result of
applying an action on the game is determined as follows.
The action produces the next abstraction state, and the set of

atomic propositions at the new abstraction state causes the
transition in the DFA. We maintain the number of human
moves remaining, and no human action is allowed from a
game state (v,z,k) where k = 0.

The resource cost function FP is extended from FG similarly,
FP : S⇥As!R�0, by considering only the abstraction vertex
component. E is the resource limit given by the user. The
goal of the robot is to drive the game into a final state using
no more than the resource limit, while the human is trying
to prevent the game from reaching a final state.

During a play of the game, starting from s0, the human
chooses either an action ae from Ae or no action. If the human
chooses no action, the robot chooses an action as from As.
The state evolves according to ae if the human chooses the
action ae. Otherwise, the state evolves by the action chosen
by the robot, as(s). Each time the robot takes an action, the
resource cost determined by FP is accumulated. This process
is repeated until a final state is reached or the accumulated
resource cost exceeds the bound E.

C. Game Winning Strategy

We now define a game winning strategy, and how this
winning strategy on the game can be used to find a strategy
on the synthesis problem. A strategy on the game for the robot
is a mapping StrP : S! As that picks the robot action given
the game state. For a strategy StrP, if all possible plays where
the robot follows StrP reach a final state with accumulated
cost no more than E, then we call StrP a winning strategy.

D. Converting StrP To Str

A strategy StrP on the game P can be converted to a
strategy Str for the synthesis problem. Recall that a strategy
Str for the original problem needs to choose an action as
given the execution so far (v0, ...,vn) 2V ⇤. We can do this
by generating the trace so far using the predicate function r ,
and using the DFA to find the current DFA state zn. We can
also observe the abstraction G to find the number of moves
the human has remaining k. Thus we can construct the game
node s = (vn,zn,k). The strategy Str can simply choose the
action determined by StrP(s). If the strategy StrP is winning
on the game, then following it will guarantee the sequence of
states produced in the DFA component is a trace that satisfies
the LTLf formula. Therefore, Str generated from StrP is a
winning strategy for the synthesis problem.

E. Strategy Synthesis

We now provide an algorithm for finding a winning strategy
on the game. We use a dynamic programming technique
similar solving DFA games [13] and quantitative synthesis
[22]. The approach is to start with the final states and grow
the set of states where a win is guaranteed, while maintaining
the action to take from these states. The algorithm is outlined
in Algorithm 1. The variable Map is a hashmap that looks
up the action to perform (Map[s].action) and the worst-case
resource needed (Map[s].cost) from a game state s. First,
we map all final game states to no action needed and no
resource needed (line 3-5). Then, we expand the map until the



Algorithm 1 Game Strategy Synthesis
1: procedure FINDSTRATEGY(G, Af , K, E)
2: Map[s] (NULL,•) for all s = (v,z,k)
3: for all s = (v,z f ,k) where z f is a final state do

4: Map[s] = (NULL,0)
5: end for

6: Converged False
7: while not Converged and Map[s0].cost > E do

8: Converged True
9: for all s = (v,z,k) do

10: CE = max(Map[s0].cost), 8s0 = ae(s)
11: CS = min(F(v,as)+Map[as(s)].cost),8as
12: Map[s].cost max(CE ,CS)
13: Map[s].action as that produced CS
14: if Map[s0] changed value then

15: Converged False
16: end if

17: end for

18: end while

19: return Map
20: end procedure

initial state is included. In each iteration, we check all game
states s. The resource needed from s is updated to the worse
scenario between the worst-case human action (line 10) and
the best-case robot action (line 11). We record the best action
for the robot to take (line 13). If any state has been updated,
we mark the game as not yet converged. This computation
terminates with success when the initial state is included, or
terminates with failure if the algorithm has converged without
setting the initial state to within the resource limit. In either
case, we return Map, which stores the action to take and
resource needed to win from each state.

To understand why the algorithm works, consider the
following. If we have included a state s in the winning set
needing Eremain to win, then no matter which action the human
takes, the new state is still in the winning set needing at most
Eremain to win. If the human does not take an action, the robot
can take the action specified by the mapping Map. The next
state is still in the winning set with resource need of at most
Eremain�FG(s.v,Map[s].action). Thus, if the initial state is in
the winning set with Map[s].cost  E, we can always reach
the final state within the resource bound E.

The runtime of Algorithm 1 is O(|S|2(|As +Ae|)). Each
iteration of the while loop scans no more than each edge
extending from each state. The total number of iterations is
no more than the number of states of the game.

Note that this game is different from a traditional turn-
based game. The robot and human actions are not alternating
or concurrent, therefore we cannot apply classical algorithms
such as minimax directly. However, this game can be
converted to a turn-based game, by creating auxiliary human
actions that represent the human taking any combinations of 0
to K actions in one turn. This incurs a blowup in the number
of human actions to consider from |Ae| to (|Ae|+1)K+1/|Ae|,
making this approach intractable.

V. CASE STUDY

We demonstrate the framework with a proof-of-concept
case study in manipulation planning. Consider again the cup-
stacking example from the introduction. Initially, the scene is
as shown in Figure 2a. To complete the stacking challenge, the
cups must be stacked as shown in Figure 2d. We demonstrate
in this section how the cup-stacking example can be naturally
expressed using an abstraction and an LTLf formula. We
then solve this problem using the approach described above.
Finally, we discuss how the resulting strategy is applied to
solve this example.

A. Abstraction
The abstraction captures a restricted set of the configuration

space that is needed for the task. We call the cups cup0,
cup1, and cup2, as shown in Figure 2, and the locations of
the pyramid top, le f tbase, and rightbase. Recall that the
abstraction is a tuple G = (V,v0,As,Ae,FG,P,r). We now
show one way an input abstraction can represent this problem.
In Section VI, we further discuss the properties this domain
that makes it possible to find such an abstraction.

The vertices v 2 V of the abstraction graph are tuples
(L(cup0),L(cup1),L(cup2),L(gripper)), where L(cupi) is
the location of cupi, and L(gripper) is the location of the
gripper. The location of a cup can take the following values:

• top, le f tbase, rightbase, indicating the object is at the
corresponding location;

• gripper, indicating the object is being held by the robot;
• elsewhere, indicating the object is placed somewhere on

the table that is not in the pyramid locations.
The location of the gripper can take the following values:

• top, le f tbase, rightbase, indicating the gripper is aligned
with the corresponding location (ready for drop);

• cupi, indicating the gripper is aligned with the cup (ready
to grab);

• f ree, indicating the arm is moving freely.
In this example, the initial vertex of the abstraction is v0 =
(rightbase,elsewhere,elsewhere, f ree).

For the set of robot edges, we consider four types of robot
actions: Drop and Grab indicate opening and closing of the
gripper, while Trans f er, and Transit represent moving the
arm with and without an object in the gripper. As contains
many instances of each type of action parametrized by the
cups and locations. Note that such edges are not limited to
the ones above. If the robot is able to perform other types of
actions such as pushing or pulling, these types of edges can
be added to the abstraction, as long as such actions can be
planned for prior to execution, or can be computed online.

Ae contains many instances of the Move action which is
parametrized by the cups and locations. Each Move models an
instantaneous transportation of a cup to a different location.

We use the following resource model FG for the robot.
The robot needs 5 units of resources for opening and closing
grippers, 25 units of resources to move the empty gripper,
and 75 and 50 units of resources to move a cup to the top
and the base locations, respectively.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Two executions of the cup-stacking policy. (a) shows the initial configuration. (d) shows the final configuration, where
any object can be used for any of the locations. (a)(b)(c)(d): Policy executed without human interference. The robot first
reaches for cup1 (b) and moves cup1 to one of the base locations (c), then moves cup2 to the top location (d, label left of
“/”). (a)(b)(c)(e)(f)(g)(h)(d): Policy execution with one human interference. When the robot is moving cup2 to the top, the
human moves cup0 away from the base (e). When the robot moves cup2 to the top, it recognizes that cup2 cannot be placed
on the top, due to the constraint given by the task (f). Instead, cup2 is directly moved to the base (g), then cup0 is retrieved
for the top (h). Finally the cups are stacked (d, label right of “/”), but with cup0 at the top location.

The atomic propositions P determine whether or not each
cup cupi is at each location l 2 {top, le f tbase,rightbase}.
r(v) can be directly read v, by examining if L(cupi) = l.

B. LTLf Specification

We wish to specify that the final configuration is reached,
and the safety constraint of not placing the top cup unless
both of the base cup are in place must be observed. In LTLf,
this task is written as

f = ⌃( V

j=0,1,2

W

i=0,1,2
Pi, j) ^

⇤
�� V

i=0,1,2
¬Pi,0

�
_
� W

i=0,1,2
Pi,1 ^

W

i=0,1,2
Pi,2

��

where Pi, j denotes L(cupi) = l j, l0 = top, l1 = le f tbase, and
l2 = rightbase. The formula can be read as “a cup is at each
of the locations top, le f tbase, and rightbase, and if a cup is
at top, there must be cups at le f tbase and rightbase.”

C. Strategy Application

Once the abstraction G and the LTLf formula f are
constructed, we use G, f , E = 3000, K = 5 to construct
the game and solve for a winning strategy. We then use the
winning strategy for the game to instruct the robot to achieve
the task. The robot initializes from the initial state of the
game, and maintains the DFA Af as well as resource usage
and the number of human actions remaining. Each time the
strategy receives the current state of the world, the robot
updates the state in Af and the the number of human actions
remaining. This information is used to look up the action to
take from the game strategy StrP. The motion corresponding
to this action is then found and applied.

D. Implementation

The translation from an LTLf formula to a DFA is
performed using Spot [24]. Our reactive strategy synthesis
algorithm is implemented in C++. Once we have constructed
the strategy, we apply it to a visualized system using the
method described in Section V-C.

The planning scene is constructed using the MoveIt!
[25] package in ROS, and we also use MoveIt! for scene
monitoring and trajectory execution. For generating motion
plans, RRTConnect [26] in the OMPL library [27] is used
through the MoveIt! interface. The resulting execution is
visualized in RViz. Communication between the strategy and
these modules is implemented using the ROS API.

E. Results

Our framework successfully found a strategy to solve
the cup-stacking problem. Random valid human moves
were applied at random intervals and the robot successfully
achieved the task in all cases. Figure 2 shows two simple
runs of the resulting strategy where the authors controlled the
human actions. In the top row, the human did not interfere,
and the robot successfully achieved the task using 400 units
of resources. In the bottom row, the robot reacts to human
interference by placing the cup originally intended for the
top at the base. This end configuration is different from
what the robot achieved without human intervention, but is
nonetheless correct. In this execution, the robot needed 775
units of resources. In both cases, the human performed far
fewer moves than is allowed, thus the robot used very little
resources compared to the bound given.

In this example, an average of 21.97s (over 10 runs) was



taken to synthesize the entire high-level strategy offline. At
runtime, the strategy is used as a lookup table. Nonetheless,
the algorithm scales exponentially with the number of objects
considered. Finding techniques to speed up computation is
a key point in future work. Motion planning is performed
online and not included in planning time.

If instead of having a strict resource bound, we only ask
the robot to execute to minimize worst-case resource usage,
we can still find a strategy by providing 0 as the resource
bound in the input. This will provide a correct strategy
because Algorithm 1 will fail, but failure only happens at the
fixed point of computation, where the resource consumption
is optimally small. Therefore, the resulting strategy stored
in Map selects the action that minimizes the worst-case
resource cost. Such a strategy is often desirable if we do
not have a hard constraint on resources but wish to use as
little energy as possible. However, running the winning set
construction algorithm until convergence could take more
time than stopping when the initial state is found with
satisfactory worst case resource needed to win. In the cup-
stacking example, an average of 26.81s (over 10 runs) is
needed to generate such a strategy.

VI. CONCLUSION AND DISCUSSION

In this paper, we take a step toward solving the reactive
strategy synthesis problem for finite tasks with resource
constraints. We introduce a framework that assumes as input
an abstraction and solves the problem by reduction to a game.
The game is in turn solved using winning set construction. We
show that this framework can be used for robotics applications
through a proof-of-concept example of a robot performing
a cup-stacking task. We plan to demonstrate this framework
on a physical UR5 robot in the future. We are also working
on addressing the runtime performance of our algorithm.

In this paper, we make the assumption that the domain
can be captured by an abstraction. The abstraction requires
that all continuous instantiations the is needed by the task is
given. In the cup-stacking example, this means that the robot
never needs to place cups at locations other than places on the
pyramid. How to generate the abstraction from the planning
scene and determining if this generation is possible is a topic
open for investigation. The abstraction also requires motion
plans for each action we want to take. We also assumed
perfect sensing in this paper. In practice, correctly sensing
the state of execution is important for ensuring execution is
carried out correctly. Considerations for motion planning and
sensing are key areas of future work.
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[1] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in International Conference on Robotics and
Automation. IEEE, 2011.

[2] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in International Conference on Robotics
and Automation. IEEE, 2014.

[3] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards manip-
ulation planning with temporal logic specifications,” in International
Conference on Robotics and Automation. IEEE, May 2015.

[4] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“Incremental task and motion planning: a constraint-based approach,”
in Robotics: Science and Systems, 2016.

[5] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in International Conference
on Hybrid Systems: Computation and Control, 2010.

[7] A. Ulusoy, M. Marrazzo, and C. Belta, “Receding horizon control in
dynamic environments from temporal logic specifications.” in Robotics:
Science and Systems, 2013.

[8] Y. Wang, N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “Task and
motion policy synthesis as liveness games.” in International Conference
on Automated Planning and Scheduling, 2016.
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