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ABSTRACT
We present a data-driven framework for strategy synthesis for
partially-known switched stochastic systems. The properties of the
system are specified using linear temporal logic (LTL) over finite
traces (LTL𝑓 ), which is as expressive as LTL and enables interpreta-
tions over finite behaviors. The framework first learns the unknown
dynamics via Gaussian process regression. Then, it builds a formal
abstraction of the switched system in terms of an uncertain Markov
model, namely an Interval Markov Decision Process (IMDP), by ac-
counting for both the stochastic behavior of the system and the
uncertainty in the learning step. Then, we synthesize a strategy on
the resulting IMDP that maximizes the satisfaction probability of
the LTL𝑓 specification and is robust against all the uncertainties
in the abstraction. This strategy is then refined into a switching
strategy for the original stochastic system. We show that this strat-
egy is near-optimal and provide a bound on its distance (error) to
the optimal strategy. We experimentally validate our framework on
various case studies, including both linear and non-linear switched
stochastic systems.

CCS CONCEPTS
• Theory of computation → Abstraction; Logic and verifica-
tion; • Computing methodologies → Gaussian processes; •
Mathematics of computing→ Stochastic processes; • Computer
systems organization→ Robotic autonomy.
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Switched stochastic systems, Gaussian process regression, Formal
synthesis, Safe autonomy, Uncertain Markov decision processes

ACM Reference Format:
John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian. 2021. Strat-
egy Synthesis for Partially-known Switched Stochastic Systems. In 24th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HSCC ’21, May 19–21,2021, Nashville, TN, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8339-4/21/05. . . $15.00
https://doi.org/10.1145/3447928.3456649

ACM International Conference on Hybrid Systems: Computationand Control
(HSCC ’21), May 19–21, 2021, Nashville, TN, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3447928.3456649

1 INTRODUCTION
Switched stochastic systems are a class of stochastic hybrid systems
(SHSs) that provide a powerful framework for modeling complex
real-world systems. They consist of a finite set of stochastic pro-
cesses that capture the uncertainty in the evolution of the under-
lying system with the ability to switch between these processes,
representing control options. These models are employed in numer-
ous application domains such as robotics [25], biological systems
[19], and cyber-physical systems [15]. Many of the applications are
in safety-critical domains and require formal analysis of the under-
lying system. Existing formal approaches to analysis and synthesis
of SHSs are model based, and the resulting guarantees apply only to
the model of the system. In reality, the true model of the system is
often partially-known due to, e.g., the use of black-box controllers,
or the lack of a closed-form analytical representation. This poses
a major challenge for formal reasoning, which also relates to the
classical question of how to extend formal guarantees from models to
systems? This work investigates a data-driven approach to address
this challenge.

Formal verification and synthesis for SHSs has been well studied
in recent years, e.g., [8, 11, 21–23, 30]. The proposed approaches can
be generally divided into two categories. One is a set of approaches
based on numerical analysis of stochastic differential (difference)
equations with asymptotic guarantees in terms of weak conver-
gence [21]. The other set of approaches is based on a finite abstrac-
tion of the SHS to a Markov process, and their formal guarantees
are on probabilistic satisfaction of temporal logic specifications,
namely linear temporal logic (LTL) and probabilistic computation
tree logic (PCTL) [4]. Despite the recent advances, both categories
of approaches assume that the SHS model is fully known and per-
fectly represents the underlying system. This assumption, however,
is often violated, especially in modern systems where AI-modules
are increasingly employed as black-box components.

A few recent studies focus on dealing with unknown dynamical
systems, e.g., [2, 12, 16, 20]. The proposed approaches are based
on data-driven methods and assume some knowledge on the sys-
tem. Work [16, 20] impose a strong assumption that the underlying
system is linear. Then, they employ techniques such as Bayesian

https://doi.org/10.1145/3447928.3456649
https://doi.org/10.1145/3447928.3456649
Morteza Lahijanian
To appear in the 2021 Proc. of the ACM Int. Conf. on Hybrid Systems: Computation and Control (HSCC 2021)



HSCC ’21, May 19–21,2021, Nashville, TN, USA John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian

inference and chance-constrained optimization to provide proba-
bilistic guarantees for the unknown system from a finite set of data.
Work [2] relaxes the linearity assumption and proposes approxi-
mation of the unknown dynamics through a piecewise-polynomial
function. Then, the safety of the system is assessed through barrier
certificates. While this method can deal with a more general class
of systems, it is unclear how the guarantees can be extended to the
underlying system.

An effective method to deal with unknown dynamics in safety-
critical applications is Gaussian process (GP) regression [29]. The
advantage of GP regression is in its ability to quantify the bound on
the uncertainty in the learning process as derived in [9, 13, 24, 31].
This has led to an increased use of GPs in safe learning frameworks,
e.g., [3, 5, 18, 28, 33]. In most work, the main objective is to learn
safe policies via reinforcement learning with the exception of work
[18], which considers a safety verification problem of unknown
systems with noisy measurements. The proposed framework uses
GPs to construct a Markov abstraction for an invariant set (safety)
analysis from a noisy dataset. In all these work, the assumption is
that the underlying system is deterministic and the specification is
simple, whereas the focus here is on unknown stochastic systems
with complex specifications.

This work presents a formal synthesis framework for stochas-
tic systems with partially-known models in the form of switched
stochastic processes. The framework is able to provide formal guar-
antees on the behavior of the underlying system from a set of data.
The specification language is LTL over finite traces (LTL𝑓 ) [10],
which has the same expressively as LTL, but the interpretations
of its formulas are over finite behaviors making it an appropriate
language for highly uncertain (unknown) systems such as those
considered here. The approach is based on finite abstraction and
employs GP regression for its construction. Given a set of data,
the framework first learns the unknown dynamics using GP re-
gression. Then, an abstraction is constructed in the form of an
uncertain Markov process, namely interval Markov decision process
(IMDP) using the known and learned dynamics as well as the errors
bounds of the learning process. Given an LTL𝑓 property, a strategy
is computed on the abstraction that maximizes the probability of
satisfaction of the property and is robust against all the errors intro-
duced in the learning and abstraction steps. This not only results
in a switching (control) strategy for the underlying system, but it
also provides a lower bound probability for the satisfaction of the
LTL𝑓 property for every initial state.

The main contribution of this work is a theoretical and com-
putational framework for control synthesis for partially-known
stochastic systems from a given set of data. This work shows a
method of harvesting the power of machine learning techniques, in
particular GP regression, in a formal synthesis framework. Unlike
classical model-based approaches, this framework enables the ex-
tension of the formal guarantees to the underlying system. This is
achieved by formally incorporating both the uncertainty related to
the stochastic behavior of the system and the uncertainty related
to the partial knowledge of the system in the abstraction, and then
accounting for these uncertainties in generating a robust switching
strategy. As a result, this framework allows for synthesis for com-
plex systems from simplified (low-fidelity) models, i.e., linearized
models; hence, enabling the use of rich and matured techniques for

simple (linear) models in control design for complex systems. Fur-
thermore, this paper presents derivations for probabilistic bounds
for the transition probabilities of the IMDP abstraction as well as
proofs of correctness for the methodology. Finally, the synthesis
framework is demonstrated through a series of case studies on un-
known stochastic systems with both linear and nonlinear dynamics
with various LTL𝑓 specifications.

2 PROBLEM FORMULATION
Consider a partially-known switched stochastic process as described
below:

x𝑘+1 = 𝑓u𝑘 (x𝑘 ) + 𝑔u𝑘 (x𝑘 ) + v𝑘 , (1)
where 𝑘 ∈ N, x𝑘 ∈ R𝑛 , u𝑘 ∈ 𝑈 , and 𝑈 = {1, ...,𝑚} is a finite
set of modes or actions. For every 𝑢 ∈ 𝑈 , 𝑓𝑢 : R𝑛 → R𝑛 is a
(known a-priori) continuous function and 𝑔𝑢 : R𝑛 → R𝑛 is a
possibly nonlinear continuous function representing the unknown
dynamics of Process (1). The noise term v𝑘 is a random variable
with an independent and stationary 𝜃 -sub-Gaussian distribution
𝑝𝑣 . This class of distributions are those whose tails decay at least
as fast as a Gaussian with variance 𝜃2, including all distributions
with bounded support the Gaussian distribution itself [26].

Intuitively, x𝑘 is a stochastic process driven by the noise process
v𝑘 , where some or all the dynamics are unknown in each mode,
and u𝑘 indicates the current mode (and hence switching between
the modes). Process (1) is a rich model that allows for the inclusion
of modeling errors in addition to noise. For instance, consider a
nonlinear noisy control system with a finite set of controls 𝑈 . If
only a linear approximate model of the system is available, then
Process (1) can be used to represent it, where 𝑓𝑢 becomes the ap-
proximate linear model of the system and 𝑔𝑢 is all the higher-order
dynamics that are not modelled under each controller 𝑢.

We assume to have a collection of state-action-state measure-
ments D = {(𝑥𝑖 , 𝑢𝑖 , 𝑥+𝑖 )

𝑚
𝑖=1} generated by Process (1), where 𝑥+

𝑖
∈

R𝑛 is a sample of one-step evolution of Process (1) when it is initial-
ized at 𝑥𝑖 ∈ R𝑛 in mode 𝑢𝑖 ∈ 𝑈 . Our goal is to use D to learn 𝑔𝑢 for
each 𝑢 ∈ 𝑈 . In order to achieve this correctly, we need an assump-
tion on the regularity of 𝑔𝑢 . The following assumption suffices to
guarantee that 𝑔𝑢 can be learned arbitrarily well via GP regression.

Assumption 1. For a compact set𝑋 ⊂ R𝑛 , let𝜅 : R𝑛×R𝑛 → R>0
be a given kernel and H𝜅 (𝑋 ) the reproducing kernel Hilbert space
(RKHS) of functions over 𝑋 corresponding to 𝜅 with norm ∥ · ∥𝜅 [31].
Then, for each 𝑢 ∈ 𝑈 and 𝑖 ∈ {1, ..., 𝑛}, 𝑔 (𝑖)𝑢 (·) ∈ H𝜅 (𝑋 ) and for a
constant 𝐵𝑖 > 0, it holds that ∥𝑔 (𝑖)𝑢 (·)∥𝜅 ≤ 𝐵𝑖 , where 𝑔

(𝑖)
𝑢 is the 𝑖-th

component of 𝑔𝑢 .

Assumption 1 is a standard assumption [18, 31], which is intimately
related to the continuity of𝑔𝑢 , as discussed in Section 4. For instance,
assuming that 𝜅 is the widely used squared exponential kernel, we
obtain thatH𝜅 (𝑋 ) is a space of functions that is dense with respect
to the set of continuous functions on a compact set 𝑋 ⊂ R𝑛, i.e.,
members ofH𝜅 (𝑋 ) can approximate any continuous function on
𝑋 arbitrarily well [32].

Let 𝜔x = 𝑥0
𝑢0−−→ 𝑥1

𝑢1−−→ . . . be a sample path (trajectory) of
Process (1) and denote by 𝜔x (𝑘) = 𝑥𝑘 , the state of 𝜔x at time 𝑘 .
Further, we denote by Ωfin

x the set of all sample paths with finite
length, i.e, the set of trajectories 𝜔𝑘

x = 𝑥0
𝑢0−−→ 𝑥1

𝑢1−−→ . . .
𝑢𝑘−1−−−−→ 𝑥𝑘
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for all 𝑘 ∈ N. With a slight abuse of notation, given path 𝜔x, we
denote by 𝜔𝑘

x the prefix of length 𝑘 + 1 of 𝜔x.
Given a finite path, a switching strategy chooses themode (action)

of Process (1).

Definition 1 (Switching Strategy). A switching strategy 𝜋x :
Ω
fin
x → 𝑈 is a function that maps a finite path 𝜔𝑘

x ∈ Ω
fin
x to a mode

(action) 𝑢 ∈ 𝑈 . The set of all switching strategies is denoted by Πx .

For 𝑢 ∈ 𝑈 , a Borel measurable set 𝑋 ⊆ R𝑛 , and 𝑥 ∈ R𝑛, call

𝑇𝑢 (𝑋 | 𝑥) =
∫

1𝑋 (𝑓𝑢 (𝑥) + 𝑔𝑢 (𝑥) + 𝑣)𝑝𝑣 (𝑣)𝑑𝑣,

the stochastic transition function induced by Process (1) in mode
𝑢 ∈ 𝑈 , where

1𝑋 (𝑥) =
{

1 if 𝑥 ∈ 𝑋
0 otherwise

is the indicator function. From the definition of𝑇𝑢 (𝑋 | 𝑥) it follows
that, given a strategy 𝜋x, for a time horizon [0, 𝑁 ], Process (1)
defines a stochastic process on the canonical space Ω = (R𝑛)𝑁+1

with the Borel 𝜎−algebra B(Ω) induced by the product topology
and with the unique probability measure 𝑃 generated by 𝑇𝜋x and a
(fixed) initial condition 𝑥0 ∈ R𝑛 such that for 𝑘 ∈ {1, ..., 𝑁 }

𝑃 [𝜔𝑁
x (0) ∈ 𝑋 ] = 1𝑋 (𝑥0),

𝑃 [𝜔𝑁
x (𝑘) ∈ 𝑋 | 𝜔𝑁

x (𝑘 − 1) = 𝑥, 𝜋x] = 𝑇𝜋x (𝜔𝑘−1
x ) (𝑋 | 𝑥).

Furthermore, for 𝑁 = ∞, 𝑃 is still uniquely defined by 𝑇𝑢 by the
Ionescu-Tulcea extension theorem [1].

In this paper, we are interested in the properties of Process (1)
in a compact set 𝑋 ⊂ R𝑛 . Specifically, we analyze the behavior of
Process (1) with respect to a finite set of closed regions of interest
𝑅 = {𝑟1, . . . , 𝑟 |𝑅 |}, where 𝑟𝑖 ⊆ 𝑋 . To this end, we associate to
each region 𝑟𝑖 the atomic proposition 𝔭𝑖 such that 𝔭𝑖 = ⊤ (i.e.,
𝔭𝑖 is true) if 𝑥 ∈ 𝑟𝑖 ; otherwise 𝔭𝑖 = ⊥ (i.e., 𝔭𝑖 is false). Let 𝐴𝑃 =

{𝔭1, . . . ,𝔭 |𝑅 |} denote the set of all atomic propositions and 𝐿 : 𝑋 →
2𝐴𝑃 be the labeling function that assigns to state 𝑥 the set of atomic
propositions that are true at 𝑥 , i.e.,

𝔭𝑖 ∈ 𝐿(𝑥) ⇔ 𝑥 ∈ 𝑟𝑖 .

Then, we define the trace or observation of path𝜔𝑘
x = 𝑥0

𝑢0−−→ 𝑥1
𝑢1−−→

. . .
𝑢𝑘−1−−−−→ 𝑥𝑘 to be

𝜌 = 𝜌0𝜌1 . . . 𝜌𝑘 ,

where 𝜌𝑖 = 𝐿(𝑥𝑖 ) ∈ 2𝐴𝑃 for all 𝑖 ≤ 𝑘 . With an abuse of notation we
use 𝐿(𝜔𝑘

x) to denote the trace of 𝜔𝑘
x .

2.1 Linear temporal logic on finite traces
(LTL𝑓 )

In this work, we are interested in the temporal properties of Pro-
cess (1) with respect to the regions of interest in 𝑅. To express such
properties, linear temporal logic (LTL) [4] is a popular choice of
language given its rich expressivity and intuitive formalism. Here,
we employ LTL interpreted over finite traces (LTL𝑓 ) [10], which
has the same syntax as LTL but its semantics is defined over finite
traces.

Definition 2 (LTL𝑓 Syntax). An LTL𝑓 formula 𝜑 is built from
a set of atomic propositions 𝐴𝑃 and is closed under the Boolean con-
nectives as well as the “next” operator X and the “until” operator
U:

𝜑 ::= ⊤ | 𝔭 | ¬𝜑 | 𝜑 ∧ 𝜑 | X𝜑 | 𝜑U𝜑
where 𝔭 ∈ 𝐴𝑃 , ⊤ is “true” or a tautology, and ¬ and ∧ are the
“negation” and “and” operators in Boolean logic, respectively.

The common temporal operators “eventually” (F ) and “globally”
(G) are defined as:

F 𝜑 = ⊤U 𝜑 and G 𝜑 = ¬F ¬𝜑.
The semantics of LTL𝑓 is defined as follows.

Definition 3 (LTL𝑓 Semantics). The semantics of an LTL𝑓 for-
mula 𝜑 are defined over finite traces in𝐴𝑃∗. The set of all finite traces
is (2𝐴𝑃 )∗. Let |𝜌 | denote the length of trace 𝜌 and 𝜌𝑖 be the 𝑖-th symbol
of 𝜌 . Further, 𝜌, 𝑖 |= 𝜑 is read as: “the 𝑖-th step of trace 𝜌 is a model of
𝜑 .” Then,

• 𝜌, 𝑖 |= ⊤,
• 𝜌, 𝑖 |= 𝔭 iff 𝔭 ∈ 𝜌𝑖 ,
• 𝜌, 𝑖 |= ¬𝜑 iff 𝜌, 𝑖 ̸ |= 𝜑,
• 𝜌, 𝑖 |= 𝜑1 ∧ 𝜑2 iff 𝜌, 𝑖 |= 𝜑1 and 𝜌, 𝑖 |= 𝜑2,
• 𝜌, 𝑖 |= X𝜑 iff |𝜌 | > 𝑖 + 1 and 𝜌, 𝑖 + 1 |= 𝜑,
• 𝜌, 𝑖 |= 𝜑1U𝜑2 iff ∃ 𝑗 s.t. 𝑖 ≤ 𝑗 < |𝜌 | and 𝜌, 𝑗 |= 𝜑2 and ∀𝑘 ,
𝑖 ≤ 𝑘 < 𝑗 , 𝜌, 𝑘 |= 𝜑1 .

Finite trace 𝜌 satisfies 𝜑 , denoted by 𝜌 |= 𝜑 , if 𝜌, 0 |= 𝜑 .

An LTL𝑓 formula 𝜑 defines a language L(𝜑) over the alphabet
2𝐴𝑃 . L(𝜑) is a regular language, more specifically,

L(𝜑) = {𝜌 ∈ (2𝐴𝑃 )∗ | 𝜌 |= 𝜑}.
Given compact set𝑋 ⊂ R𝑛 , its set of regions of interest 𝑅 and the

corresponding set of atomic propositions 𝐴𝑃 , and an LTL𝑓 formula
𝜑 defined over 𝐴𝑃 , as in [34], we say that path 𝜔x of Process (1)
satisfies 𝜑 if there exists a prefix of 𝜔x that is in the language of 𝜑
and lies entirely in 𝑋 , i.e.,

𝜔x |= 𝜑 ⇔ ∃𝑘 ∈ N 𝑠 .𝑡 . 𝐿(𝜔𝑘
x) ∈ L(𝜑) and

𝜔𝑘
x (𝑘 ′) ∈ 𝑋 ∀𝑘 ′ ≤ 𝑘, (2)

where 𝐿(𝜔𝑘
x) ∈

(
2𝐴𝑃

)∗ is the trace (observation) of 𝜔𝑘
x .

2.2 Problem Formulation
The ideal goal of this work is, given an LTL𝑓 formula 𝜑 , to synthe-
size a switching strategy 𝜋∗x such that under 𝜋∗x the probability of
the paths of Process (1) that satisfy𝜑 is maximized. Nevertheless, we
should stress that, in general, the partial knowledge of Process (1)
and the limited amount of data available (not controllable a-priori)
make it infeasible to find a switching strategy that maximizes such
a probability. Hence, in Problem 1 we seek a near-optimal strategy
such that, under this switching strategy, Process (1) is guaranteed
to satisfy 𝜑 with a (high) probability greater than a given threshold
with a quantifiable distance from the optimal probability.

Problem 1 (Switching Strategy Synthesis). Given a partially-
known switched stochastic system as defined in Process (1), a dataset
D, a compact set 𝑋 , an LTL𝑓 property 𝜑 defined over the regions
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of interest in 𝑋 , and a probability threshold 𝑝 , find a near-optimal
switching strategy 𝜋𝜀x that determines whether for every 𝑥0 ∈ 𝑋

𝑃 [𝜔x |= 𝜑 | 𝜋𝜀x, 𝜔x (0) = 𝑥0] ≥ 𝑝,

and quantify the corresponding error 𝜀𝑥0 ≥ 0 with respect to the
optimal switching strategy, i.e.,

|𝑃 [𝜔x |= 𝜑 | 𝜋𝜀x, 𝜔x (0) = 𝑥0] − 𝑝∗ (𝑥0) | ≤ 𝜀𝑥0 ,

where 𝑝∗ (𝑥0) = max𝜋x∈Πx 𝑃 [𝜔x |= 𝜑 | 𝜋x, 𝜔x (0) = 𝑥0].
Overview of the Approach. In order to solve Problem 1 we rely on
GP regression and Assumption 1 to find a function 𝑔𝑢 such that
with high probability, |𝑔𝑢 (𝑥) − 𝑔𝑢 (𝑥) | ≤ 𝜖𝑢 for all 𝑥 ∈ 𝑋 and a
given 𝜖𝑢 > 0. We then use 𝑔𝑢 to build an abstraction of Process
(1) in terms of a finite Markov model, where the stochastic nature
of Process (1), the error in employing 𝑔𝑢 instead of 𝑔𝑢 , and the
error corresponding to the discretization of space are all formally
modelled as uncertainty. We then synthesize an optimal strategy
for the resulting Markov model that maximizes the probability that
the paths of the Markov model satisfy 𝜑 and is robust against the
uncertainties. Finally, we derive upper and lower bounds on the
probability that Process (1) satisfies 𝜑 under this strategy.

3 PRELIMINARIES
3.1 Gaussian Process Regression
Gaussian Process (GP) regression is a non-parametric Bayesian
machine learning method [29]. For an unknown function g : R𝑛 →
R, the basic assumption of GP regression is that g is a sample from
a GP with covariance 𝜅 : R𝑛 × R𝑛 → R>0. Consider a dataset of
samples D = {(x𝑖 , y𝑖 ), 𝑖 ∈ {1, . . . ,𝑚}}, where y𝑖 is a sample of an
observation of g(x𝑖 ) with independent zero-mean noise 𝑣 , which is
assumed to be normally distributed with variance 𝜎2. Let X and Y
be ordered vectors with all points in D such that X𝑖 = x𝑖 and Y𝑖 =
y𝑖 . Further, call 𝐾 (X,X) the matrix with 𝐾𝑖, 𝑗 (X𝑖 ,X𝑗 ) = 𝜅 (x𝑖 , x𝑗 ),
𝐾 (x,X) the vector such that𝐾𝑖 (x,X) = 𝜅 (x,X𝑖 ), and𝐾 (X, x) defined
accordingly. Then, the predictive distribution of g at a test point
x is given by the conditional distribution of g given D, which is
Gaussian and with mean 𝜇D and variance 𝜎2

D given by

𝜇D (x) = 𝐾 (x,X)
(
𝐾 (X,X) + 𝜎2𝐼𝑚

)−1
𝑌 (3)

𝜎2
D (x) = 𝜅 (x, x) − 𝐾 (x,X)

(
𝐾 (X,X) + 𝜎2𝐼𝑚

)−1
𝐾 (X, x), (4)

where 𝐼𝑚 is the identity matrix of size𝑚 ×𝑚.

3.2 Interval Markov Decision Processes
We use a generalization of Markov decision processes to abstract
the system. An interval Markov decision process (IMDP), also called
bounded-parameter Markov decision process, uses interval-valued
transition probabilities [14, 17].

Definition 4 (IMDP). An intervalMarkov decision process (IMDP)
is a tuple I = (𝑄,𝐴, 𝑃, 𝑃,𝐴𝑃, 𝐿), where

• 𝑄 is a finite set of states,

• 𝐴 is a finite set of actions, and𝐴(𝑞) denotes the set of available
actions at state 𝑞 ∈ 𝑄 .

• 𝑃 : 𝑄 ×𝐴 ×𝑄 → [0, 1] is a function, where 𝑃 (𝑞, 𝑎, 𝑞′) defines
the lower bound of the transition probability from state 𝑞 ∈ 𝑄
to state 𝑞′ ∈ 𝑄 under action 𝑎 ∈ 𝐴(𝑞),

• 𝑃 : 𝑄 ×𝐴 ×𝑄 → [0, 1] is a function, where 𝑃 (𝑞, 𝑎, 𝑞′) defines
the upper bound of the transition probability from state 𝑞 ∈ 𝑄
to state 𝑞′ ∈ 𝑄 under action 𝑎 ∈ 𝐴(𝑞),

• 𝐴𝑃 is a finite set of atomic propositions,

• 𝐿 : 𝑄 → 2𝐴𝑃 is a labeling function that assigns to each state
𝑞 ∈ 𝑄 a subset of 𝐴𝑃 .

For all𝑞, 𝑞′ ∈ 𝑄 and𝑎 ∈ 𝐴(𝑞), it holds that 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 𝑃 (𝑞, 𝑎, 𝑞′)
and

∑
𝑞′∈𝑄 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 1 ≤ ∑

𝑞′∈𝑄 𝑃 (𝑞, 𝑎, 𝑞′).
A path of an IMDP is a sequence of states 𝜔I = 𝑞0

𝑎0−−→ 𝑞1
𝑎1−−→

𝑞2
𝑎2−−→ . . . such that 𝑎𝑘 ∈ 𝐴(𝑞𝑘 ) and 𝑃 (𝑞𝑘 , 𝑎𝑘 , 𝑞𝑘+1) > 0 for all

𝑘 ∈ N. We denote the last state of a finite path 𝜔fin
I by last (𝜔fin

I )
and the set of all finite and infinite paths by Pathsfin and Paths,
respectively. The actions are chosen according to a strategy 𝜋 which
is defined below.

Definition 5 (Strategy). A strategy 𝜋 of an IMDP model I is a
function 𝜋 : Pathsfin → 𝐴 that maps a finite path 𝜔fin

I of I onto an

action in 𝐴(last (Pathsfin)). If a strategy depends only on last (𝜔fin
I ),

it is called a memoryless (stationary) strategy. The set of all strategies
is denoted by Π.

Given an arbitrary strategy 𝜋 , we are restricted to the set of in-
terval Markov chains defined by the transition probability intervals
induced by 𝜋 . In order to reduce this to a Markov chain, we de-
fine the adversary function, which assigns a transition probability
distribution at each state.

Definition 6 (Adversary). For an IMDP I, an adversary is a
function 𝜉 : Pathsfin × 𝐴 → D(𝑄) that, for each finite path 𝜔fin

I ∈
Pathsfin, state 𝑞 = last (𝜔fin

I ), and action 𝑎 ∈ 𝐴(last (𝜔fin
I )), assigns

a feasible distribution 𝛾𝑎𝑞 which satisfies

𝑃 (𝑞, 𝑎, 𝑞′) ≤ 𝛾𝑎𝑞 (𝑞′) ≤ 𝑃 (𝑞, 𝑎, 𝑞′).

The set of all adversaries is denoted by Ξ.

Under a strategy and a valid adversary, the IMDP collapses to a
Markov chain and induces a probability measure on its paths. We
use this measure as an optimization objective for synthesizing a
desirable strategy.

4 IMDP ABSTRACTION
In order to solve Problem 1, we start by abstracting Process (1) into
an IMDP I = (𝑄,𝐴, 𝑃, 𝑃,𝐴𝑃, 𝐿). Below we describe how we obtain
𝑄,𝐴,𝐴𝑃, and 𝐿. Then, in Section 4.2 we consider upper and lower
bounds for the transition probabilities.

4.1 States and Actions
The set of states 𝑄 of I is obtained by discretizating the compact
set 𝑋 . This discretization needs to respect the set of regions of
interest 𝑅 = {𝑟1, ..., 𝑟 |𝑅 |}. To achieve this, we first construct a set of
non-overlapping regions of interests 𝑅′ from 𝑅 such that

∪𝑟 ′∈𝑅′ 𝑟 ′ = 𝑅 and 𝑟 ′𝑖 ∩ 𝑟
′
𝑗 = ∅ ∀𝑟 ′𝑖 , 𝑟

′
𝑗 ∈ 𝑅

′ and 𝑟 ′𝑖 ≠ 𝑟
′
𝑗 .

Then, we partition each 𝑟 ′
𝑖
into a set of cells (regions) that are non-

overlapping. Next, we partition the remainder of the compact set
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(𝑋 \ 𝑅) to a set of non-overlapping cells. Let 𝑄𝑠 = {𝑞1, ..., 𝑞 |𝑄𝑠 |} de-
note the resulting set of all cells (include 𝑅′). Then, by construction,
it holds that

∪𝑞∈𝑄𝑠
𝑞 = 𝑋, and 𝑞 ∩ 𝑞′ = ∅ ∀𝑞, 𝑞′ ∈ 𝑄𝑠 and 𝑞 ≠ 𝑞′.

Each region is associated to a state of IMDP I. With an abuse
of notation, 𝑞 denotes both the region, i.e., 𝑞 ⊂ 𝑋 , as well as its
corresponding IMDP state, i.e, 𝑞 ∈ 𝑄 . From the context, the correct
interpretation of 𝑞 should be clear. Furthermore, let 𝑞𝑢 denote the
remainder of the state space, i.e., R𝑛 \ 𝑋 . Then, the set of states of
I is defined as

𝑄 = 𝑄𝑠 ∪ {𝑞𝑢 }.
The set of actions 𝐴 of I is given by the set of modes𝑈 , i.e., 𝐴 = 𝑈 ,
and all actions are available at each state of I, i.e., 𝐴(𝑞) = 𝐴 for all
𝑞 ∈ 𝑄 .

The set of atomic propositions 𝐴𝑃 is the same as those defined
over 𝑋 . With an abuse of notation, we define the IMDP labeling
function 𝐿 : 𝑄 → 2𝐴𝑃 with 𝐿(𝑞) = 𝐿(𝑥) for any choice of 𝑥 ∈
𝑞. Note that, because the discretization respects the regions of
interests, the labels of the points in a discrete cell are necessarily
the same, i.e., 𝐿(𝑥) = 𝐿(𝑥 ′) for all 𝑥, 𝑥 ′ ∈ 𝑞.

4.2 Transition Probability Bounds
In order to compute the transition probability bounds 𝑃 and 𝑃 for all
𝑞, 𝑞′ ∈ 𝑄 and 𝑢 ∈ 𝐴 = 𝑈 , we need to derive the following bounds:

𝑃 (𝑞,𝑢, 𝑞′) ≤ min
𝑥 ∈𝑞

𝑇𝑢 (𝑞′ | 𝑥), (5)

𝑃 (𝑞,𝑢, 𝑞′) ≥ max
𝑥 ∈𝑞

𝑇𝑢 (𝑞′ | 𝑥) . (6)

However, without any knowledge about 𝑔𝑢 in Process (1), the com-
putation of such quantities is infeasible. In what follows we show
how we can employ the data in D and GP regression to compute a
function 𝑔𝑢 such that for any 𝑥 ∈ 𝑋, 𝑔𝑢 (𝑥) and 𝑔𝑢 (𝑥) are provably
close.

4.2.1 Regression Approach. In our setting, data in D are samples
(𝑥,𝑢, 𝑥+) of Process (1) such that

𝑥+ = 𝑓𝑢 (𝑥) + 𝑔𝑢 (𝑥) + 𝑣,

where both 𝑥 and 𝑢 are known and 𝑣 is a sample from the noise
process v. From this we can obtain a measurement of 𝑔𝑢 by simply
noticing that 𝑓𝑢 is known, i.e., we obtain a dataset composed by:

𝑦+ = 𝑥+ − 𝑓𝑢 (𝑥) = 𝑔𝑢 (𝑥) + 𝑣, (7)

where 𝑦+, 𝑥+, 𝑥,𝑢 are all known. Note that, in our setting, we make
no assumptions on the fact that 𝑔𝑢 is a sample from a given GP.
Furthermore, the noise v𝑘 is not necessarily Gaussian for any 𝑘 ∈
N. As a result, the assumptions for GP regression discussed in
Section 3.1 are not satisfied and we cannot directly use its prediction
to make probabilistic statements over 𝑔𝑢 . Nevertheless, thanks to
Assumption 1 we can rely on the properties of the RKHS space
generated by 𝜅 to bound the regression error even in our more
agnostic setting.

In particular, for each 𝑔𝑢 : R𝑛 → R𝑛 , we use 𝑛 independent
GPs to learn 𝑔 (𝑖)𝑢 , the 𝑖-th component of 𝑔𝑢 . Then, for a given mode
𝑢, we consider 𝑔 (𝑖)𝑢 = 𝜇D, where 𝜇D is the posterior mean of the

GP as described in (3). We use the following Lemma from [9] to
characterize the error in employing 𝑔𝑢 instead of 𝑔𝑢 .

Lemma 1 ([9], Theorem 2). Let 𝑋 be a compact set, 𝛿 ∈ (0, 1),
𝛾𝑚𝜅 the maximum information gain parameter associated with 𝜅 and
dataset D of𝑚 training points, and 𝐵𝑖 > 0 such that ∥𝑔 (𝑖)𝑢 ∥𝜅 ≤ 𝐵𝑖 .
Assume that v is 𝜃 -sub-Gaussian and 𝜇D and 𝜎D are found by setting
𝜎 = 1+ 2/𝑚. Define 𝛽 = (𝜃/

√
𝜎)

(
𝐵𝑖 +𝜃

√
2(𝛾𝑚𝜅 + 1 + log 1/𝛿)

)
. Then,

it holds that

𝑃
[
∀𝑥 ∈ 𝑋, |𝜇𝐷 (𝑥) − 𝑔 (𝑖)𝑢 (𝑥) | < 𝛽𝜎𝐷 (𝑥)

]
≥ 1 − 𝛿. (8)

One challenge in employing Lemma 1 is in determining the
values (or bounds) for the information gain constant 𝛾𝑚𝜅 and the
RKHS constant 𝐵𝑖 . A procedure for obtaining 𝛾𝑚𝜅 is given in [31].
The RKHS constant 𝐵𝑖 is instead intimately related to the continuity
of 𝑔𝑢 , as shown in Theorem 3.11 of [27], where a bound of 𝐵𝑖 in
terms of the maximum value that 𝑔𝑢 obtains in 𝑋 and the kernel 𝜅
is given.

4.2.2 Transitions within 𝑄𝑠 . For all states 𝑞, 𝑞′ ∈ 𝑄𝑠 , the transition
probability bounds in (5) are given by Theorem 1 below. In order to
state this result, we first need to introduce the notions of expansion
and reduction of a closed set.

Definition 7 (Expansion and Reduction of a Set). Given a
compact set 𝑞 ⊂ R𝑛 and a set of 𝑛 scalars 𝑐 = {𝑐1, . . . , 𝑐𝑛}, where
𝑐𝑖 ≥ 0, the expansion of 𝑞 by 𝑐 is defined as

𝑞(𝑐) = {𝑥 ∈ R𝑛 | ∃𝑥𝑞 ∈ 𝑞 𝑠.𝑡 . |𝑥 (𝑖)𝑞 − 𝑥 (𝑖) | ≤ 𝑐𝑖 ∀𝑖 = {1, . . . , 𝑛}},

and the reduction of 𝑞 by 𝑐 is

𝑞(𝑐) = {𝑥𝑞 ∈ 𝑞 | ∀𝑥𝜕𝑞 ∈ 𝜕𝑞, |𝑥 (𝑖)𝑞 − 𝑥 (𝑖)
𝜕𝑞

| > 𝑐𝑖 ∀𝑖 = {1, . . . , 𝑛}},

where 𝜕𝑞 denotes the boundary of 𝑞.

In addition, we define the image of region 𝑞 under the learned
dynamics by

𝐼𝑚(𝑞) = {𝑓𝑢 (𝑥) + 𝑔𝑢 (𝑥) | 𝑥 ∈ 𝑞}

and the intersection indicator function as

1𝑊
𝑉

=

{
1 if 𝑉 ∩𝑊 ≠ ∅
0 otherwise

for arbitrary sets 𝑉 and𝑊 . We can now bound the transition prob-
abilities between the IMDP states in 𝑄𝑠 .

Theorem 1. Let ∥ℎ∥𝑞∞ ≡ sup𝑥 ∈𝑞 |ℎ(𝑥) |. Given an action (mode)
𝑢 ∈ 𝐴, regions 𝑞, 𝑞′ ∈ 𝑄𝑠 , dataset D, regression 𝑔𝑢 , and positive real
vectors 𝜖 ∈ R𝑛 and 𝜂 ∈ R𝑛 , it holds that

max
𝑥 ∈𝑞

𝑇𝑢 (𝑞′ | 𝑥)

≤ 1𝐼𝑚 (𝑞)
𝑞′ (𝜖+𝜂)

𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]
𝑛∏
𝑖=1

𝑃 [|𝑣 (𝑖) | ≤ 𝜂𝑖 ]

+
𝑛∏
𝑖=1

(1 − 𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]),

(9)
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min
𝑥 ∈𝑞

𝑇𝑢 (𝑞′ | 𝑥) ≥

1𝐼𝑚 (𝑞)
𝑋\𝑞′ (𝜖+𝜂)

𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]
𝑛∏
𝑖=1

𝑃 [|𝑣 (𝑖) | ≤ 𝜂𝑖 ] .
(10)

Proof. Let ∥𝑔𝑢 − 𝑔𝑢 ∥ ≤ 𝜖 denote the event ∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥ ≤ 𝜖𝑖
for 𝑖 = 1, . . . , 𝑛 (and similar for the complementary event). Define

𝑃 [𝜔x (1) ∈ 𝑞′ | 𝑥,𝑢] B 𝑃 [𝜔x (1) ∈ 𝑞′ |𝜔x (0) = 𝑥 ∈ 𝑞,𝑢] .

Then using the law of total probability

𝑃 [𝜔x (1) ∈ 𝑞′ | 𝑥,𝑢] =

𝑃 [𝜔x (1) ∈ 𝑞′ | 𝑥,𝑢, ∥𝑔𝑢 − 𝑔𝑢 ∥ ≤ 𝜖]
𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]+

𝑃 [𝜔x (1) ∈ 𝑞′ | 𝑥,𝑢, ∥𝑔𝑢 − 𝑔𝑢 ∥ > 𝜖]
𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ > 𝜖𝑖 ]

The transition kernel can be upper bounded by

max
𝑥 ∈𝑞

𝑇𝑢 (𝑞′ | 𝑥) = max
𝑥 ∈𝑞

𝑃 [𝜔x (1) ∈ 𝑞′ | 𝑥,𝑢] ≤

max
𝑥 ∈𝑞

𝑃 [𝜔x (1) ∈ 𝑞′ | 𝑥,𝑢, ∥𝑔𝑢 − 𝑔𝑢 ∥ ≤ 𝜖]
𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]

+ 1 ·
𝑛∏
𝑖=1

(1 − 𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]).

To account for the uncertainty in the regression and process noise,
we again use the law of total probability and expand 𝑞′ by 𝜖 and 𝜂
and check for an intersection between 𝐼𝑚(𝑞) and 𝑞′(𝜖 + 𝜂):

≤ 1𝐼𝑚 (𝑞)
𝑞′ (𝜖+𝜂)

𝑛∏
𝑖=1

𝑃 [|𝑣 (𝑖) | ≤ 𝜂𝑖 ]
𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]+

𝑛∏
𝑖=1

(1 − 𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]) .

Similarly, the transition kernel can be lower bounded by deter-
mining if any points lie outside of the intersection of 𝐼𝑚(𝑞) and
𝑞′(𝜖 + 𝜂):

min
𝑥 ∈𝑞

𝑇𝑢 (𝑞′ | 𝑥) = min
𝑥 ∈𝑞

𝑃 [𝜔x (1) ∈ 𝑞′ | 𝑥,𝑢]

≥ 1𝐼𝑚 (𝑞)
𝑋\𝑞 (𝜖+𝜂)

𝑛∏
𝑖=1

𝑃 ( [𝑣 (𝑖) | ≤ 𝜂𝑖 ]
𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]

+ 0 ·
𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ > 𝜖𝑖 ]

= 1𝐼𝑚 (𝑞)
𝑋\𝑞′ (𝜖+𝜂)

𝑛∏
𝑖=1

𝑃 [|𝑣 (𝑖) | ≤ 𝜂𝑖 ]
𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ] .

□

Theorem 1 computes formal bounds for the transition proba-
bilities by using the law of total probability with respect to the
events |𝑣 (𝑖) | ≤ 𝜂𝑖 (noise is bounded by 𝜂𝑖 ), ∥𝑔 (𝑖)𝑢 −𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 (the
supremum of the regression error is bounded by 𝜖𝑖 for all 𝑥 ∈ 𝑞),
and their complementary events. In particular, a bound on the prob-
ability of the latter event can be obtained by Lemma 1, while the

probability of former depends on the known distribution of the
noise 𝑝𝑣 .

In order to get non-trivial transition bounds, constants 𝜂 and 𝜖
should be selected to minimize or maximize the bounds in (9) and
(10) respectively. In particular, we pick 𝜂 as the smallest constants
such that the noise is bounded by 𝜂 with high probability, e.g.,
0.99. Then, for this 𝜂, our procedure to choose a value for 𝜖 is as
follows. We first check if 𝐼𝑚(𝑞) ⊂ 𝑞′. If it is the case, we pick 𝜖 as
the greatest constants such that 𝐼𝑚(𝑞) ⊂ 𝑞′(𝜖 + 𝜂). Otherwise, we
simply select 𝜖 as the smallest constants such that ∥𝑔 (𝑖)𝑢 −𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖
with high probability, e.g., that satisfies the bound in Lemma 1 with
probability 0.99.

Note that for𝑞 ⊂ 𝑋 the above procedure requires one to compute
𝐼𝑚(𝑞). This is equivalent to computing the maximum andminimum
of (3) for all 𝑥 ∈ 𝑞. Arbitrarily tight bounds for these quantities
can be computed by utilizing the convexity of most used kernels,
such as the the squared-exponential function, as outlined in [6, 7].
With a similar approach, a bound for max𝑥 ∈𝑞 𝜎𝐷 (𝑥) can also be
computed, as this is required for the computation of Lemma 1.

4.2.3 Transitions to 𝑞𝑢 . The probability interval for transitioning
to the state 𝑞𝑢 ∈ 𝑄 , i.e., the region outside of 𝑋 , is given by

𝑃 (𝑞,𝑢, 𝑞𝑢 ) = 1 − max
𝑥 ∈(𝑞

𝑇𝑢 (𝑋 | 𝑥),

𝑃 (𝑞,𝑢, 𝑞𝑢 ) = 1 − min
𝑥 ∈(𝑞

𝑇𝑢 (𝑋 | 𝑥) .

These bounds can be calculated as a corollary of Theorem 1.

Corollary 1. Let 𝑞 ∈ 𝑄𝑠 , then for any 𝜖, 𝜂 > 0 it holds that

𝑃 (𝑞,𝑢, 𝑞𝑢 )

≥ 1 − 1𝐼𝑚 (𝑞)
𝑋 (𝜖+𝜂)

𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]
𝑛∏
𝑖=1

𝑃 [|𝑣 (𝑖) | ≤ 𝜂𝑖 ]

−
𝑛∏
𝑖=1

(1 − 𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]),

𝑃 (𝑞,𝑢, 𝑞𝑢 )

≤ 1 − 1𝐼𝑚 (𝑞)
𝑋\𝑋 (𝜖+𝜂)

𝑛∏
𝑖=1

𝑃 [∥𝑔 (𝑖)𝑢 − 𝑔 (𝑖)𝑢 ∥𝑞∞ ≤ 𝜖𝑖 ]
𝑛∏
𝑖=1

𝑃 [|𝑣 (𝑖) | ≤ 𝜂𝑖 ] .

To complete the construction of abstraction I, we make 𝑞𝑢 ab-
sorbing, i.e., 𝑃 (𝑞𝑢 , 𝑢, 𝑞𝑢 ) = 𝑃 (𝑞𝑢 , 𝑢, 𝑞𝑢 ) = 1 for all 𝑢 ∈ 𝐴, to ensure
that I does not account for the transitions to 𝑋 from 𝑞𝑢 since such
paths do not satisfy 𝜑 as defined in (2).

5 STRATEGY SYNTHESIS
Given an LTL𝑓 formula 𝜑 , ideally we would like to synthesize an
optimal switching strategy 𝜋∗x for Process (1), under which the prob-
ability of satisfaction of 𝜑 by the paths of Process (1) is maximized.
However, since 𝑔𝑢 is unknown, this is generally infeasible. Instead,
we employ the IMDP abstraction I as constructed above, which is a
conservative model of Process (1) since the transition probabilities
of I include uncertainties (errors) of the learning process as well as
those related to the discretization. On this model, we find a strategy
that is robust against all these uncertainties and maximizes the
probability of satisfying 𝜑 . Then, we can refine this strategy to a
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switching strategy for Process (1). Note that the resulting strategy
is not necessarily optimal for Process (1), however, in what follows
we show how the error between the resulting strategy and optimal
strategy 𝜋∗x can be quantified.

5.1 Near-optimal Robust Strategy
The uncertainties in I are characterized by adversary 𝜉 , which
chooses a feasible transition probability from one IMDP state to
another under a given action. Recall that given a strategy 𝜋 and
an adversary 𝜉 , I becomes a Markov chain with a well-defined
probability measure over its paths. Then, our (robust and near-
optimal strategy) objective translates to finding a strategy that
maximizes the probability of satisfying 𝜑 with the assumption that
the adversary (uncertainty) attempts to minimize this probability,
i.e.,

𝜋𝜀 = arg max
𝜋 ∈Π

min
𝜉 ∈Ξ

𝑃 [𝜔I |= 𝜑 | 𝜋, 𝜉, 𝜔I (0) = 𝑞], (11)

Under 𝜋𝜀 , the lower bound and upper bound on the probability of
satisfaction are then given by

𝑝 (𝑞) = min
𝜉 ∈Ξ

𝑃 [𝜔I |= 𝜑 | 𝜋𝜀 , 𝜉, 𝜔I (0) = 𝑞], (12)

𝑝 (𝑞) = max
𝜉 ∈Ξ

𝑃 [𝜔I |= 𝜑 | 𝜋𝜀 , 𝜉, 𝜔I (0) = 𝑞], (13)

respectively.
To correctly refine a strategy computed on I to a switching

strategy for process x, let 𝑧 : R𝑛 → 𝑄 be a function that maps each
state 𝑥 of Process (1) to its corresponding discrete region 𝑞 ∈ 𝑄 ,
i.e., 𝑧 (𝑥) = 𝑞 iff 𝑥 ∈ 𝑞. We also use 𝑧 to denote mapping from
finite paths of process x to finite paths of I, i.e., for a finite path
𝜔𝑘
x = 𝑥0

𝑢0−−→ 𝑥1
𝑢1−−→ . . .

𝑢𝑘−1−−−−→ 𝑥𝑘 , the corresponding path on I is
given by

𝑧 (𝜔𝑘
x) = 𝑧 (𝑥0)

𝑢0−−→ 𝑧 (𝑥1)
𝑢1−−→ . . .

𝑢𝑘−1−−−−→ 𝑧 (𝑥𝑘 ) .

Then, strategy 𝜋𝜀 on I is correctly refined to a switching strategy
𝜋𝜀x for process x by

𝜋𝜀x (𝜔𝑘
x) = 𝜋𝜀 (𝑧 (𝜔𝑘

x)) . (14)

Note that, the maximum probability of satisfaction of 𝜑 by Pro-
cess (1) is necessarily lower bounded by 𝑝 in (10), i.e., 𝑝∗ (𝑥) ≥
𝑝 (𝑧 (𝑥)), where

𝑝∗ (𝑥) = max
𝜋x

𝑃 [𝜔x |= 𝜑 | 𝜋x, 𝜔x (0) = 𝑥] .

However, 𝑝∗ (𝑥) is not necessarily upper bounded by 𝑝 in (13). Prob-
ability 𝑝∗ (𝑥) can instead be upper bounded by

𝑝∗ (𝑥) = max
𝜋 ∈Π

max
𝜉 ∈Ξ

𝑃 [𝜔I |= 𝜑 | 𝜋, 𝜉, 𝜔I (0) = 𝑧 (𝑥)], (15)

where the adversary (uncertainty) cooperatively chooses feasible
transition probabilities to maximize the probability of satisfaction
of 𝜑 . Therefore,

𝑝∗ (𝑥) ∈ [𝑝 (𝑧 (𝑥)), 𝑝∗ (𝑧 (𝑥))] .

Below, we show how the strategy in (11), its corresponding prob-
ability bounds in (12) and (13), and probability in (15) can be com-
puted.

5.2 Synthesis
Given an LTL𝑓 formula 𝜑 , a deterministic finite automaton can be
constructed that precisely accepts the language of 𝜑 per [10].

Definition 8 (DFA). A deterministic finite automaton (DFA) con-
structed from an LTL𝑓 formula 𝜑 defined over atomic propositions
𝐴𝑃 is a tuple A𝜑 = (𝑆, 2𝐴𝑃 , 𝛿, 𝑠0, 𝑆𝐹 ), where 𝑆 is a finite set of states,
2𝐴𝑃 is a finite set of input symbols, each of which is a set of atomic
propositions in 𝐴𝑃 , 𝛿 : 𝑆 × 2𝐴𝑃 → 𝑆 is the transition function, 𝑠0 ∈ 𝑆
is the initial state, and 𝑆𝐹 ⊆ 𝑆 is the set of accepting (final) states.

A finite run on a DFA is a sequence of states 𝑠 = 𝑠0𝑠1 . . . 𝑠𝑛+1
induced by a sequence of symbols 𝜌 = 𝜌0𝜌1 . . . 𝜌𝑛 , where 𝜌𝑖 ∈ 2𝐴𝑃
and 𝑠𝑖+1 = 𝛿 (𝑠𝑖 , 𝜌𝑖 ). Finite run 𝑠 on trace 𝜌 is accepting if 𝑠𝑛 ∈ 𝑆𝐹 . If 𝑠
is accepting, then trace 𝜌 is accepted byA𝜑 . The set of all traces that
are accepted byA𝜑 is call the language ofA𝜑 , denoted by L(A𝜑 ).
This language is equal to the language of 𝜑 , i.e., L(𝜑) = L(A𝜑 ).

Next, we construct a product of DFAA𝜑 with IMDPI to capture
the paths of I that satisfy 𝜑 .

Definition 9 (Product IMDP). Given an IMDP I = (𝑄,𝐴, 𝑃P ,
𝑃P , 𝐴𝑃, 𝐿) and DFA A𝜑 = (𝑆, 2𝐴𝑃 , 𝛿, 𝑠0, 𝑆𝐹 ), the product IMDP
(PIMDP) P = I × A𝜑 is itself an IMDP defined as the tuple P =

(𝑄P , 𝐴, 𝑃P , 𝑃P , 𝑄P
0 , 𝑄

P
𝐹
), where 𝑄P = 𝑄 × 𝑆 , 𝑄P

𝐹
= 𝑄 × 𝑆𝐹 ,

𝑄P
0 = {(𝑞, 𝑠𝑖𝑛𝑖𝑡 ) | 𝑞 ∈ 𝑄, 𝑠𝑖𝑛𝑖𝑡 = 𝛿 (𝑠0, 𝐿(𝑞))},

and

𝑃P ((𝑞, 𝑠), 𝑢, (𝑞′, 𝑠 ′)) =
{
𝑃 (𝑞,𝑢, 𝑞′) if 𝑠 ′ = 𝛿 (𝑠, 𝐿(𝑞))
0 otherwise

𝑃P ((𝑞, 𝑠), 𝑢, (𝑞′, 𝑠 ′)) =
{
𝑃 (𝑞,𝑢, 𝑞′) if 𝑠 ′ = 𝛿 (𝑠, 𝐿(𝑞))
0 otherwise.

In its essence, the PIMDP incorporates the historical dependencies
on the runs of the DFA and couples them with the paths of the
IMDP. The projection of a path of P that reaches a state in𝑄P

𝐹
onto

A𝜑 is an accepting run, and hence, the projection of this path onto
abstraction I is a path that satisfies 𝜑 . Therefore, the synthesis
problem in (11) is reduced to computing a robust (pessimistic) strat-
egy on product P that maximizes the probability of reaching 𝑄P

𝐹
.

Similarly, the probability in (15) is given by an optimistic strategy
on P that maximizes the the probability of reaching 𝑄P

𝐹
. These

problems are variations of a known problem calledmaximal reacha-
bility probability problem and can be solved using a method similar
to value iteration called interval-value iteration [22, 35], whose
computational complexity is polynomial. The resulting strategies
are stationary on P, which map to history dependent strategies on
I.

5.3 Correctness
The following theorem shows that 𝜋𝜀x in (14) is a 𝜀-near-optimal
switching strategy for Process (1) and quantifies its distance (error)
𝜀 to the optimal switching strategy 𝜋∗x.

Theorem 2. Given a partially-known switched stochastic system
as defined in Process (1), a dataset 𝐷 , a compact set 𝑋 ⊂ R𝑛 , an LTL𝑓
formula 𝜑 defined over the regions of interest in 𝑋 , let I be an IMDP
abstraction as described in Section 4, 𝜋𝜀 be a strategy on I given by
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(11), and 𝜋𝜀x be the switching strategy for Process (1) obtained from
𝜋𝜀 according to mapping 𝑧 in (14). Further, let 𝑝 , 𝑝 , and 𝑝∗ be the
probability bounds in (12), (13), and (15), respectively. Then, it holds
that

𝑃 [𝜔x |= 𝜑 | 𝜋𝜀x, 𝜔x (0) = 𝑥] ∈ [𝑝 (𝑧 (𝑥)), 𝑝 (𝑧 (𝑥))],
and

|𝑃 [𝜔x |= 𝜑 | 𝜋𝜀x, 𝜔x (0) = 𝑥] − 𝑝∗ (𝑥) | ≤ 𝑝∗ (𝑧 (𝑥)) − 𝑝 (𝑧 (𝑥)),

where 𝑝∗ (𝑥) = max𝜋x∈Πx 𝑃 [𝜔x |= 𝜑 | 𝜋x, 𝜔x (0) = 𝑥].

Theorem 2 is a straightforward consequence of Theorem 1 and guar-
antees that the probability that Process (1) satisfies 𝜑 is contained
between 𝑝 and 𝑝 . In order to quantify the distance of 𝜋𝜖x from the
optimal strategy 𝜋∗x, we compute the optimal upper bound probabil-
ity 𝑝∗ correspondent to the strategy that optimistically maximizes
the probability of reaching 𝑄P

𝐹
. In fact, recall that 𝜋𝜀x corresponds

to the strategy that maximizes the lower bound of reaching 𝑄P
𝐹
. It

follows that for any 𝑥 ∈ 𝑋,

𝜀𝑥 = |𝑝∗ (𝑧 (𝑥)) − 𝑝 (𝑧 (𝑥)) |.

Given a probability bound 𝑝 on the satisfaction of formula 𝜑 ,
we use 𝑝 and 𝑝 to classify each initial state 𝑥0 ∈ 𝑋 as one of the
following:

𝑥 ∈


𝑄yes if 𝑝 (𝑧 (𝑥)) ≥ 𝑝

𝑄no if 𝑝 (𝑧 (𝑥)) < 𝑝
𝑄? otherwise.

Given initial state 𝑥0, we can guarantee that 𝜑 is definitely satisfied
by the underlying system with at least 𝑝 if 𝑥0 ∈ 𝑄yes. If 𝑥0 ∈ 𝑄no,
then we can guarantee that the underlying system never meets the
probability threshold 𝑝 . For 𝑥0 ∈ 𝑄?, no guarantees relative to the
threshold 𝑝 can be given.

6 CASE STUDIES
We illustrate the proposed framework in three case studies using
linear and nonlinear switched systems. In all the demonstrations,
the compact set is 𝑋 = [−2, 2] × [−2, 2]. We use a uniform grid of
size 0.125 over 𝑋 to create 𝑄𝑠 for our abstraction.

6.1 Linear Switched System with Three Modes
Wefirst demonstrate the framework on a three-mode linear switched
system similar to the synthesis example presented in [22]. We as-
sume the dynamics in all three modes are unknown, i.e.,

x𝑘+1 = 𝑔u𝑘 (x𝑘 ) + v𝑘 ,

where each mode is a linear system with 𝑔𝑢 (x𝑘 ) = 𝐴𝑢x𝑘 for all
𝑢 ∈ {1, 2, 3},

𝐴1 =

[
0.4 0.1
0 0.5

]
, 𝐴2 =

[
0.4 0.5
0 0.5

]
, 𝐴3 =

[
0.4 0
0.5 0.5

]
,

and v is drawn from a Gaussian distribution N(0, 𝜎2𝐼 ) truncated
between [−𝜎, 𝜎] with 𝜎 = 0.01.

Two-hundred i.i.d. data points per mode were sampled and prop-
agated through the dynamics to create the dataset for regression.
Figure 1 shows the partition of𝑋 with labelled regions𝐷𝑒𝑠 and𝑂𝑏𝑠
indicating “Desired” and “Obstacle” regions, respectively. With an

Figure 1: Region partition and classification of initial states
using the strategy synthesized for the linear system and 𝜑1.

abuse of notation, these are used to define the atomic propositions
{𝐷𝑒𝑠,𝑂𝑏𝑠} and the LTL𝑓 specification

𝜑1 = G(¬𝑂𝑏𝑠) ∧ F (𝐷𝑒𝑠),

which reads, “Globally avoid Obstacles and eventually reach a De-
sired region”.

Using our framework, we learned the unknown dynamics and
synthesized a robust and near-optimal switching strategy 𝜋𝜀 . Fig-
ure 1 shows the classification of each initial region with threshold
probability 𝑝 = 0.95 under this strategy. Initial states with the 𝐷𝑒𝑠
label belong to 𝑄yes as they satisfy 𝜑1 while states with the 𝑂𝑏𝑠
label violate it and belong to 𝑄no. There are additional states be-
longing to𝑄yes such that actions dictated by 𝜋𝜀 drive the system to
an accepting state with a high probability. These results closely re-
semble the results presented in [22], which assumed full knowledge
of the dynamics, whereas here the dynamics are fully unknown
and are estimated from a limited set of data.

6.2 Parameter Choices
We provide a brief look at the effect of choosing different values
of 𝜂, the bounds on the noise components in Theorem 1, on the
synthesis results. For any choice of 𝜂, the optimal value of 𝜖 , the
bounds on the suprema of the regression error components, is then
chosen to minimize (maximize) the upper-bound (lower-bound)
of the transition probability in Theorem 1 as discussed previously.
In the ideal case, the noise parameter primarily effects the lower-
bound of the transition probability, as the optimal choice of 𝜖 leaves
the indicator function in (10) with a value of zero.

For the three-mode linear switched system above, the effect
of changing 𝜂 uniformly in a naïve manner is shown in Figure 2.
The choices of 𝜂 are presented as fractions of the bounds on the
truncated Gaussian distribution. As expected, the lower-bound on
the probability of satisfaction decreases as the value of 𝜂 decreases.
In a large part, this is due to the reduction in the lower-bound of
the probability of staying within 𝑋 . There is clearly an optimal
trade-off to be made between 𝜖 and 𝜂, which will be considered in
future work.
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(a) 𝜂 = 0.5𝜎 (b) 𝜂 = 0.75𝜎

(c) 𝜂 = 0.95𝜎 (d) 𝜂 = 0.99𝜎

Figure 2: Effect on changing the parameter 𝜂 on the lower
bound of the probability of satisfaction from each state.

6.3 Nonlinear Switched System with Four
Modes

Next, we synthesize a switching strategy for a nonlinear system
with four modes, a known linear dynamics component, and an
unknown nonlinear dynamics component. The form of the system
is

x𝑘+1 = x𝑘 + 𝑔u𝑘 (x𝑘 ) + v𝑘
The unknown dynamics are

𝑔𝑢 (x𝑘 ) =


[0.5 + 0.2 sinx(2)

𝑘
, 0.4 cosx(1)

𝑘
]𝑇 if 𝑢 = 1

[−0.5 + 0.2 sinx(2)
𝑘
, 0.4 cosx(1)

𝑘
]𝑇 if 𝑢 = 2

[0.4 cosx(2)
𝑘
, 0.5 + 0.2 sinx(1)

𝑘
]𝑇 if 𝑢 = 3

[0.4 cosx(2)
𝑘
,−0.5 + 0.2 sinx(1)

𝑘
]𝑇 if 𝑢 = 4

where 𝑥 (𝑖) indicates the 𝑖-th component of the state. Three-hundred
i.i.d. data points were generated from each mode with the same
noise distribution.

The region of interest is𝐷𝑒𝑠 , which indicated by the black square
in Figure 3a, and the specification is

𝜑2 = F 𝐷𝑒𝑠.

Figure 3a shows the synthesis and simulated result. The black lines
indicate simulated paths from a set of randomly selected initial
states, and the star indicates the terminal state. Individual simu-
lations were terminated if an accepting state in the PIMDP was
reached, or if the specification was violated. The size of 𝑄yes in
Figure 3a shows that the strategy 𝜋𝜀 can drive many states into

(a) State classification and simulations.

(b) Optimization error 𝜀 at each state.

Figure 3: Synthesis results and simulations for the nonlinear
system for 𝜑2. The black square in (a) indicates the region
with label 𝐷𝑒𝑠.

𝐷𝑒𝑠 with a high probability. However, there are many states in𝑄no.
In these states, the upper-bound of the probability of satisfying 𝜑2
induced by employing 𝜋𝜀 does not meet 𝑝 . In other words, there is
a significant chance of violating 𝜑2.

Figure 3b shows upper bounds of error 𝜀 at each state. Recall that
𝜀 bounds the satisfaction probability distance under optimal and
near-optimal strategies in Problem 1. The darker regions correspond
to areas with 𝜀 approaching zero, meaning 𝜋𝜀 is indeed near-optimal.
The lighter regions with 𝜀 approaching one indicate that 𝜋𝜀 does
not necessarily choose the optimal action. This could be mitigated
by collecting more data and performing a finer abstraction, or it is
possible the system does not have sufficient control authority.

Finally, we perform controller synthesis for the partially-known
nonlinear switched system given the specification

𝜑3 = G(¬𝑂) ∧ F (𝐷1) ∧ F (𝐷2)
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with two reachability objectives. Figure 4a shows the partitioning
of the space with labels 𝐷1, 𝐷2 and𝑂 indicating “Desired Location
1”, “Desired Location 2” and “Obstacle” regions respectively. We
use the same abstraction we generated in the previous case.

Figure 4b shows several simulation results from different initial
states, two of which are in 𝑄? and the others in 𝑄yes. The 𝑄no

set is comprised of only the 𝑂 regions, because starting in 𝑂 auto-
matically violates the specification. Much of the 𝑄yes set is made
up of a majority of 𝐷2 and some states starting in 𝐷1. There is a
large amount of free space that can be driven into 𝐷1 with high
probability. All paths but one terminate with satisfying 𝜑3, but a
single path is driven into an obstacle. Figure 4c shows that the
optimal action has been found for many of the states, but there is
a significant number of states with a trivial bound of 𝜀 = 1. This
metric can help identify areas for further data collection, or state
discretization refinement.

7 CONCLUSION
We developed a data-driven framework for synthesizing a near-
optimal control strategy for partially unknown switched stochastic
systems with LTL𝑓 specifications. The framework is based on ab-
straction to an uncertain Markov model that incorporates both the
uncertainty given by the stochastic dynamics of the system and
the uncertainty in learning the unknown dynamics of the system
via GP regression. Our work makes a step towards formally safe
and correct data-driven systems. However, many challenges are
ahead in order to make our framework to scale to larger datasets
and higher dimensional systems. In the future, we plan to con-
sider sparse Gaussian processes as well as optimal techniques for
parameter tuning and refinement.
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