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ABSTRACT

Thiswork targets the development of an efficient abstractionmethod
for formal analysis and control synthesis of discrete-time stochastic
hybrid systems (shs) with linear dynamics. The focus is on temporal
logic specifications over both finite- and infinite-time horizons. The
framework constructs a finite abstraction as a class of uncertain
Markov models known as interval Markov decision process (imdp).
Then, a strategy that maximizes the satisfaction probability of the
given specification is synthesized over the imdp and mapped to the
underlying shs. In contrast to existing formal approaches, which
are by and large limited to finite-time properties and rely on con-
servative over-approximations, we show that the exact abstraction
error can be computed as a solution of convex optimization prob-
lems and can be embedded into the imdp abstraction. This is later
used in the synthesis step over both bounded- and unbounded-time
properties, mitigating the known state-space explosion problem.
Our experimental validation of the new approach compared to ex-
isting abstraction-based approaches shows: (i) significant (orders
of magnitude) reduction of the abstraction error; (ii) marked speed-
ups; and (iii) boosted scalability, allowing in particular to verify
models with more than 10 continuous variables.
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1 INTRODUCTION

Stochastic hybrid systems (shs) are general and expressive models
for the quantitative description of complex dynamical and control
systems, such as cyber-physical systems. shs have been used for
modeling and analysis in diverse domains, ranging from avionics
[5] to chemical reaction networks [6] and manufacturing systems
[7]. Many of these applications are safety-critical; as a consequence,
a theoretical framework providing formal guarantees for analysis
and control of shs is of major importance.

Formal verification and synthesis for stochastic processes and
shs have been the focus of many recent studies [8, 17, 18, 21, 24].
These methods can provide formal guarantees on the probabilistic
satisfaction of quantitative specifications, such as those expressed
in linear temporal logic (ltl). An approach to formal verification,
which is particularly relevant for discrete-time models, hinges on
the abstraction of continuous-space stochastic models into discrete-
space Markov process [8, 16, 17]. This leads to discrepancies be-
tween the abstract and original models, which can be captured
through error guarantees. The main issue with this approach is
its lack of scalability to complex models, which is related to the
known state-space explosion problem. This issue is aggravated by

https://doi.org/10.1145/3302504.3311805
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the conservative nature of the error bounds; thus, to guarantee a
given verification error, a very fine abstraction is generally required,
leading to state-space explosion.

This paper introduces a theoretical and computational synthesis
framework for discrete-time shs that is both formal and scalable.
We zoom in on shs that take the shape of switching diffusions [23],
which are linear in the continuous dynamics and where the control
action resides in a mode switch. We focus on two fragments of ltl
to encode properties for the shs, namely co-safe ltl (csltl) [15],
which allows the expression of unbounded and complex reacha-
bility properties, and bounded ltl (bltl) [14], which enables the
expression of bounded-time and safety properties. The framework
consists of two stages (abstraction and control synthesis) and puts
forward key novel contributions. In the first step, (i) we introduce
a novel space discretization technique that is dynamics-dependent,
and (ii) we derive an analytical form for tight (exact) error bounds
between the abstraction and the original model, (iii) which is re-
duced to the solution of a set of convex optimization problems
leading to fast computations. The error is formally embedded as un-
certain transition probabilities in the abstract model. In the second
stage, (iv) a strategy (control policy) is computed by considering
only feasible transition probability distributions over the abstract
model, preventing the explosion of the error term. Finally, this strat-
egy is soundly refined to a switching strategy for the underlying
shs with guarantees on the computed probability bounds. We pro-
vide (v) an illustration of the efficacy of the framework via three
case studies, including a comparison with the state of the art. In
conclusion, this work provides a new computational abstraction
framework for discrete-time shs that is both formal and markedly
more scalable than state-of-the-art techniques and tools.

2 PROBLEM FORMULATION

We consider a shs and a property of interest given as a temporal
logic statement.We are interested in computing a switching strategy
that optimizes the probability of achieving the property. Below, we
formally introduce the model, property, and problem.

2.1 Stochastic Hybrid Systems

We consider a class of discrete-time shs with linear continuous
dynamics and no resets of the continuous components.

Definition 1 (shs). A (discrete-time) linear stochastic hybrid

systemH is a tupleH = (A, F ,G, ϒ,L), where
• A = {a1, . . . ,a |A |} is a finite set of discrete modes, each of

which containing a continuous domainRm , defining the hybrid

state space S = A × Rm ,

• F = {F (a) ∈ Rm×m | a ∈ A} is a collection of drift terms,

• G = {G(a) ∈ Rm×r | a ∈ A} is a collection of diffusion terms,

• ϒ =
{
p1, . . . ,pn

}
is a set of atomic propositions,

• L : S → 2ϒ is a labeling function that assigns to each hybrid

state possibly several elements of ϒ.

A pair s = (a,x) ∈ S , where a ∈ A and x ∈ Rm , denotes a hybrid
state of H, and the evolution of H for k ∈ Z≥0 is a stochastic
process s(k) = (a(k), x(k)) with values in S . The term x represents
the evolution of the continuous component ofH according to the

stochastic difference equation

x(k + 1) = F (a)x(k) +G(a)w, (1)
a ∈ A, w ∼ N(0,Covw ),

where w ∈ Rr is a Gaussian noise with zero mean and covariance
matrix Covw ∈ Rr×r . The signal a describes the evolution of the
discrete modes over time.

For κ ∈ Z≥0∪ {∞}, we call PathsκH : {0, 1, . . . ,κ} → S the set of
sample paths of s of length κ. The set of all sample paths with finite
and infinite lengths are denoted by Paths�n

H and PathsH . We denote
by ωH , ω

k
H , and ωH(i) a sample path, a sample path of length k ,

and the (i + 1)-th state on the path ωH ofH, respectively.

Definition 2 (Switching strategy). A switching strategy for

H is a function σH : Paths�n
H → A that assigns a discrete mode a ∈ A

to a finite path ωH of the process s. The set of all switching strategies
is denoted by ΣH .

Given a switching strategy σH , the evolution of s(k) for k < κ, is
defined on the probability space (Sκ+1,B(Sκ+1), P), where B(Sκ+1)
is the product sigma-algebra on the product space Sκ+1, and P is a
probability measure. We call T the transition kernel such that for
any measurable set B ⊆ Rm , x ∈ Rm , and a ∈ A,

T (B | x ,a) =
∫
B
N(t | F (a)x ,G(a)TCovwG(a))dt , (2)

where N(t | F (a)x ,G(a)TCovwG(a)) is a normal distribution with
mean F (a)x and variance G(a)TCovwG(a). Then, it holds that P is
uniquely defined by T , and for k < ∞,

T (B | xk ,ak ) = P(x(k + 1) ∈ B | x(k) = xk , a(k) = ak ).

We note that, for κ = ∞, P is still uniquely defined by T by the
Ionescu-Tulcea extension theorem [2].

We are interested in the properties ofH in set (A×X ) ⊂ S , where
X ⊂ Rm is a continuous compact set. Specifically, we analyze the
behavior ofH with respect to a set of closed regions of interest R =
{r1, . . . , rn }, where ri ⊆ X . To this end, we associate to each region
ri the atomic proposition (label) pi , i.e., pi ∈ L(s = (a,x)) ⇔ x ∈ ri .
Further, we define the (observation) trace of path ωkH = s0s1 . . . sk
to be

ξ = ξ0ξ1 . . . ξk ,

where ξi = L(si ) ∈ 2ϒ for all i ≤ k . For a path ωH ∈ PathsH with
infinite length, we obtain an infinite-length trace.

2.2 Temporal Logic Specifications

We employ co-safe linear temporal logic (csltl) [15] and bounded

linear temporal logic (bltl) [14] to write the properties ofH. We
use csltl to encode complex reachability properties with no time
bounds, and bltl to specify bounded-time properties.

Definition 3 (csltl syntax). A csltl formula φ over a set of

atomic propositions ϒ is inductively defined as follows:

φ := p | ¬p | φ ∨ φ | φ ∧ φ | Xφ | φUφ | F φ,

where p ∈ ϒ, ¬ (negation), ∨ (disjunction), and ∧ (conjunction) are

Boolean operators, and X (“next"),U (“until"), and F (“eventually")

are temporal operators.
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Definition 4 (bltl syntax). A bltl formula φ over a set of

atomic propositions ϒ is inductively defined as following:

φ := p | ¬φ | φ ∨ φ | Xφ | φU≤kφ | F≤kφ | G≤kφ,
where p ∈ ϒ is an atomic proposition, ¬ (negation) and ∨ (disjunc-

tion) are Boolean operators, X (“next”),U≤k (“bounded until"), F≤k
(“bounded eventually"), and G≤k (“bounded always") are temporal

operators.

Definition 5 (Semantics). The semantics of csltl and bltl path

formulas are defined over infinite traces over 2ϒ . Let ξ = {ξi }∞i=0 with

ξi ∈ 2ϒ be an infinite trace and ξ i = ξiξi+1 . . . be the i-th suffix.

Notation ξ |= φ indicates that ξ satisfies formula φ and is recursively

defined as following:

• ξ |= p if p ∈ ξ0;

• ξ |= ¬φ if ξ 6 |= φ ;
• ξ |= φ1 ∨ φ2 if ξ |= φ1 or ξ |= φ2;

• ξ |= φ1 ∧ φ2 if ξ |= φ1 and ξ |= φ2;

• ξ |= Xφ if ξ 1 |= φ ;
• ξ |= φ1Uφ2 if ∃k ≥ 0, ξ k |= φ2, and ∀i ∈ [0, k ), ξ i |= φ1;

• ξ |= Fφ if ∃k ≥ 0, ξ k |= φ ;
• ξ |= φ1U≤kφ2 if ∃j ≤ k , ξ j |= φ2, and ∀i ∈ [0, j), ξ i |= φ1;

• ξ |= F≤kφ if ∃j ≤ k , ξ j |= φ ;
• ξ |= G≤kφ if ∀j ≤ k , ξ j |= φ .

A trace ξ satisfies a csltl or bltl formula φ iff there exists a
“good” finite prefix ξ of ξ such that the concatenation ξξ satisfies φ
for every suffix ξ [14, 15]. Therefore, even though the semantics of
csltl and bltl are defined over infinite traces, we can restrict the
analysis to the set of their good prefixes, which consists of finite
traces.

2.3 Problem Statement

We say that a finite path ωH of H, initialized at state s0 ∈ S ,
satisfies a formula φ if the path remains in the compact set X and
its corresponding finite trace ξ |= φ. Under a switching strategy
σH , the probability that the shs satisfies φ is given by:

P(φ | s0,X ,σH) = P
(
ωH ∈ Paths

fin,σH
H | ωH(0) = s0,

ωH(k) ∈ (A × X ) ∀k ∈ [0, |ωH | ], ξ |= φ
)
, (3)

where Pathsfin,σHH denotes the set of all finite paths under strategy
σH , and ξ is the observation trace of ωH . In this work, we are
interested in synthesizing a switching strategy that maximizes the
probability of satisfying property φ.

Problem 1 (Strategy synthesis). Given the shs H in Def. 1,

a continuous compact set X , and a property expressed as a csltl or

bltl formula φ, find a switching strategy σ ∗H that maximizes the

probability of satisfying φ

σ ∗H = arg max
σH ∈ΣH

P(φ | s0,X ,σH)

for all initial states s0 ∈ A × X .

2.4 Overview of Proposed Approach

We solve Problem 1 with a discrete abstraction that is both formal
and computationally tractable. We construct a finite model in the

form of an uncertain Markov process that captures all possible
behaviors of the shsH. This construction involves a discretization
of the continuous set X and hence of R. We quantify the error of
this approximation and represent it in the abstract Markov model
as uncertainty. We then synthesize an optimal strategy on this
model that (i) optimizes the probability of satisfying φ, (ii) is robust
against the uncertainty and thus (iii) can be mapped (refined) onto
the concrete model H. In the rest of the paper, we present this
solution in detail and show all the proofs in Appendix A.

3 PRELIMINARIES

3.1 Markov Models

We utilize Markov models as abstraction structures.

Definition 6 (mdp). A Markov decision process (mdp) is a tuple

M = (Q,A, P , ϒ,L), where:
• Q is a finite set of states,

• A is a finite set of actions,

• P : Q ×A ×Q → [0, 1] is a transition probability function.

• ϒ is a finite set of atomic propositions;

• L : Q → 2ϒ is a labeling function assigning to each state

possibly several elements of ϒ.

The set of actions available at q ∈ Q is denoted by A(q). The
function P has the property that

∑
q′∈Q P(q,a,q′) = 1 for all pairs

(q,a), where q ∈ Q and a ∈ A(q).
A path ω through an mdp is a sequence of states ω = q0

a0−−→
q1

a1−−→ q2
a2−−→ . . . such that ai ∈ A(qi ) and P(qi ,ai ,qi+1) > 0 for

all i ∈ N. We denote the last state of a finite path ω�n by last(ω�n)
and the set of all finite and infinite paths by Paths

�n and Paths,
respectively.

Definition 7 (Strategy). A strategy σ of an mdp modelM is

a function σ : Paths�n → A that maps a finite path ω�n
ofM onto

an action in A. If a strategy depends only on last(ω�n), it is called a
memoryless or stationary strategy. The set of all strategies is denoted

by Σ.1

Given a strategy σ , a probability measure Prob over the set of all
paths (under σ ) Paths is induced on the resulting Markov chain [3].

A generalized class of mdps that allows a range of transition
probabilities between states is known as bounded-pa-rameter [10]
or interval mdp (imdp) [12].

Definition 8 (imdp). An interval Markov decision process (imdp)

is a tuple I = (Q,A, P̌ , P̂ , ϒ,L), where Q , A, ϒ, and L are as in Def. 6,

and

• P̌ : Q ×A ×Q → [0, 1] is a function, where P̌(q,a,q′) defines
the lower bound of the transition probability from state q to

state q′ under action a ∈ A(q),
• P̂ : Q ×A ×Q → [0, 1] is a function, where P̂(q,a,q′) defines
the upper bound of the transition probability from state q to

state q′ under action a ∈ A(q).

1We focus on deterministic strategies as they are sufficient for optimality of csltl
and bltl properties [1, 17, 19].
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For all q,q′ ∈ Q and a ∈ A(q), it holds that P̌(q,a,q′) ≤ P̂(q,a,q′)
and ∑

q′∈Q
P̌(q,a,q′) ≤ 1 ≤

∑
q′∈Q

P̂(q,a,q′).

LetD(Q) denote the set of discrete probability distributions overQ .
Given q ∈ Q and a ∈ A(q), we call γaq ∈ D(Q) a feasible distribution
reachable from q by a if

P̌(q,a,q′) ≤ γaq (q′) ≤ P̂(q,a,q′)
for each state q′ ∈ Q . We denote the set of all feasible distributions
for state q and action a by Γaq .

In imdps, the notions of paths and strategies are extended from
those of mdps in a straightforward manner. A distinctive concept
instead is that of adversary, which is a mechanism that selects
feasible distributions from interval sets.2

Definition 9 (Adversary). Given an imdp I, an adversary is a

function π : Paths�n × A→ D(Q) that, for each finite path ω�n ∈
Paths

�n
and action a ∈ A(last(ω�n)), assigns a feasible distribution

π (ω�n,a) ∈ Γa
last(ω�n).

Given a finite path ω�n, a strategy σ , and an adversary π , the
semantics of a path of the imdp is as follows. At state q = last(ω�n),
first an action a ∈ A(q) is chosen by strategy σ . Then, the adversary
π resolves the uncertainties and chooses one feasible distribution
γaq ∈ Γaq . Finally, the next state q′ is chosen according to the distri-
bution γaq , and the path ω�n is extended by q′.

Given a strategy σ and an adversary π , a probability measure
Prob over the set of all finite paths Paths (under σ and π ) is induced
by the resulting Markov chain [17].

3.2 Polytopes and their Post Images

We use (convex) polytopes as means of discretization in our abstrac-
tion. Letm ∈ N and consider them-dimensional Euclidean space
Rm . A full dimensional (convex) polytope P is defined as the convex
hull of at leastm + 1 affinely independent points in Rm [11]. The
set of vertices of P is the set of pointsvP

1 , . . . ,v
P
nP ∈ R

m , nP ≥ m+1,
whose convex hull gives P and with the property that, for any
i = 1, . . . ,nP, point vP

i is not in the convex hull of the remain-
ing points vP

1 , . . . ,v
P
i−1, v

P
i+1, . . . ,v

P
nP . A polytope is completely

described by its set of vertices,

P = conv(vP
1 , . . . ,v

P
nP ), (4)

where conv denotes the convex hull. Alternatively, P can be de-
scribed as the bounded intersection of at least m + 1 closed half
spaces. In other words, there exists a k ≥ m + 1, hi ∈ Rm , and
li ∈ R, i = 1, . . . ,k such that

P = {x ∈ Rm | hTi x ≤ li , i = 1, . . . ,k}. (5)

The above definition can be written as thematrix inequalityHx ≤ L,
where H ∈ Rk×m and L ∈ Rk .

Given a matrix T ∈ Rm×m , the post image of polytope P by T
is defined as [17]:

Post(P,T) =
{
Tx | x ∈ P

}
.

2In the verification literature for mdps, the notions of strategy, policy, and adver-
sary are often used interchangeably. The semantics of adversary over imdps is however
distinguished.

This post image is a polytope itself under the linear transformation
T and can be computed as:

Post(P,T) = conv

(
{TvP

i | 1 ≤ i ≤ nP}
)
.

4 SHS ABSTRACTION AS AN IMDP

As the first step to approach Problem 1, we abstract the shsH to an
imdp I = (Q,A, P̌ , P̂ , ϒ̄,L). Below we overview the construction of
the abstraction, and in Sec. 5, we detail the computations involved.

IMDP States. We perform a discretization of the hybrid state
space A × X . For each discrete mode a ∈ A, we partition the
corresponding set of interest X into a set of cells (regions) that
are non-overlapping, except for trivial sets of measure zero (their
boundaries). We assume that each region is a bounded polytope.
We denote by Qa = {qa1 , ...,q

a
|Qa |} the resulting set of regions in

mode a. To each cell qai , we associate a state of the imdp I. We
overload the notation by using qai for both a region inX , and a state
of I, i.e., qai ∈ Q . Therefore, the set (A×X ) ⊂ S can be represented
by Q̄ =

⋃
a∈A Qa . The set of imdp states is Q = Q̄ ∪ {qu} with qu

representing S \ (A × X ), namely the complement of A × X .
IMDP Actions and Transition Probabilities. We define the

set of actions of I to be the set of modes A of H, and allow all
actions to be available in each state of I, i.e., A(q) = A for all q ∈ Q .
We define the one-step transition probability from a continuous
state x ∈ X to region q ∈ Q̄ under action (mode) a ∈ A to be defined
by the transition kernel T (q | x ,a) in (2). The caveat is that the
states of I correspond to regions inH, and there are uncountably
many possible (continuous) initial states (here x) in each region,
resulting in a range of feasible transition probabilities to the region
q. Therefore, the transition probability from one region to another
can be characterized by a range given by the min and max of (2)
over all the possible points x in the starting region. Thus, we can
now bound the feasible transition probabilities from state qi ∈ Q̄
to state qj ∈ Q̄ from below by

γaqi (qj ) ≥ min
x ∈qi

T (qj | x ,a), (6)

and from above by

γaqi (qj ) ≤ max
x ∈qi

T (qj | x ,a). (7)

Thus, for qi ,qj ∈ Q̄ , we can define the extrema P̌ and P̂ of the
transition probability of I according to these bounds.

Similarly, we define the bounds of the feasible transition proba-
bilities to states outside X as

γaqi (qu ) ≥ 1 − max
x ∈qi

T (X | x ,a), (8)

γaqi (qu ) ≤ 1 − min
x ∈qi

T (X | x ,a), (9)

and consequently set the bounds in I to be

P̌(qi ,a,qu ) = 1 − max
x ∈qi

T (X | x ,a), (10)

P̂(qi ,a,qu ) = 1 − min
x ∈qi

T (X | x ,a), (11)

for all a ∈ A and qi ∈ Q̄ . Finally, since we are not interested in
the behavior of H outside of A × X , we render the state qu of I
absorbing, i.e., P̌(qu ,a,qu ) = P̂(qu ,a,qu ) = 1, ∀a ∈ A.
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IMDP Atomic Propositions & Labels. In order to ensure a
correct abstraction ofH by I with respect to the labels ofH and
the set R = {r1, . . . , rn }, even for discretizations of A × X that do
not respect the regions in R, we represent (possibly conservatively)
each ri as well as its complement relative to X through the labeling
of the states of I. Let

rn+i = X \ ri

be the complement region of ri with respect to X . We associate to
each rn+i a new atomic proposition pn+i for 1 ≤ i ≤ n. Intuitively,
pn+i represents ¬pi with respect to X . We define the set of atomic
propositions for I to be

ϒ̄ = ϒ ∪
{
pn+1, . . . ,p2n

}
. (12)

Then, we design L : Q → 2ϒ̄ of I such that

pi ∈ L(q) ⇔ q ⊆ ri , (13)

for all q ∈ Q̄ and 0 ≤ i ≤ 2n, and L(qu ) = ∅.
With this modeling, we capture (possibly conservatively) all the

property regions ofH by the state labels of I. Then, a formula φ
over ϒ of H can be easily translated to a formula φ̄ on ϒ̄ of I by
rewriting φ into its negation normal form and replacing ¬pi with
pn+i . We note that all csltl and bltl formulas can be written in
negation normal form without any loss in their expressive power
[13].

Remark 1. The extension of the atomic propositions in (12) is not
necessary if the discretization of A × X respects all the regions in R,
i.e., ∃Qr ⊆ Q s.t. ∪q∈Qr q = r for all r ∈ R.

5 COMPUTATION OF THE IMDP

In this section, we introduce an efficient and scalable method for
space discretization and computation for

min
x ∈qi

T (qj | x ,a), max
x ∈qi

T (qj | x ,a). (14)

To this end, we first define a hyper-rectangle and proper tranforma-

tion function as follows.

Definition 10 (Hyper-rectangle). A hyper-rectangle in Rm is

anm-dimensional rectangle defined by the intervals

[v(1)l ,v
(1)
u ] × [v

(2)
l ,v

(2)
u ] × · · · × [v

(m)
l ,v

(m)
u ], (15)

where vectors vl ,vu ∈ Rm capture the lower and upper values of the

vertices of the rectangle in each dimension, and v(i) denotes the i-th
component of vector v .

Definition 11 (Proper transformation). For a polytope q ⊂
Rm , the transformation function T ∈ Rm×m is proper if Post(q,T)
is a hyper-rectangle.

We also note that process x in mode a is Gaussian with one-step
covariance matrix

Covx(a) = G(a)TCovwG(a). (16)

Then, we can characterize T (q | x ,a) analytically as follows.

Proposition 1. For process x in mode a ∈ A, let Ta = Λ
− 1

2
a VT

a be

a transformation function (matrix), where Λa = VT
a Covx(a)Va is a

diagonal matrix whose entries are eigenvalues of Covx(a) and Va is

the corresponding orthonormal (eigenvector) matrix. For a polytopic

region q ⊂ Rm , if Ta is proper, then it holds that

T (q | x ,a) = 1
2m

m∏
i=1

(
erf(

y(i) −v(i)l√
2
) − erf(y

(i) −v(i)u√
2
)
)
, (17)

where erf(·) is the error function, and y(i) is the i-th component of

vector y = Ta F (a)x , and v(i)l , v
(i)
u are as in (15).

A direct consequence of Proposition 1 is that the optimizations
in (14) can be performed on (17) through a proper transformation,
as stated by the following corollary.

Corollary 1. For polytopic regions qi ,qj ⊂ Rm and process x in

mode a, assume Ta is a proper transformation function with respect

to qj , and define q′i = Post(qi , F (a)) and

f (y) = 1
2m

m∏
i=1

(
erf(

y(i) −v(i)l√
2
) − erf(y

(i) −v(i)u√
2
)
)
, (18)

where vl and vu are as in (15). Then, it holds that

min
x ∈qi

T (qj | x ,a) = min
y∈Post(q′i ,Ta )

f (y),

max
x ∈qi

T (qj | x ,a) = max
y∈Post(q′i ,Ta )

f (y).

The above proposition and corollary show that, for a particu-
lar proper transformation function Ta , an analytical form can be
obtained for the discrete kernel of the imdp. This is an important ob-
servation because it enables efficient computation for the min and
max values of the kernel. Therefore, we use a space discretization
to satisfy the condition in Proposition 1 as described below.

5.1 Space Discretization

For each mode a ∈ A, we define the linear transformation function
(matrix) of

Ta = Λ
− 1

2
a VT

a , (19)
where Λa = VT

a Covx(a)Va is a diagonal matrix whose entries are
the eigenvalues of Covx(a), and Va is the corresponding orthonor-
mal (eigenvector) matrix. The discretization of the continuous set
X in mode a is achieved by using a grid in the transformed space
by Ta . That is, we first transform X by Ta , and then discretize it
using a grid. This method of discretization guarantees that, for
each qa ∈ Qa , Post(qa ,Ta ) is a hyper-rectangle, i.e., Ta is proper.
Hence, we can use the result of Proposition 1 and Corollary 1 for
the computation of the values in (14).

Remark 2. For an arbitrary geometry of X , it may not be possible

to obtain a discretization such that

⋃
qa ∈Qa qa = X . Nevertheless, by

using a discretization that under-approximates X , i.e.,

⋃
qa ∈Qa qa ⊆

X , in each mode a, we can compute a lower bound on the probability

of satisfaction of a given property φ. For a better approximation, the

grid can be non-uniform, allowing in particular for smaller cells near

the boundary of X , as in [8].

5.2 Transition Probability Bounds

We distinguish between transitions from q ∈ Q̄ to the states in Q̄
and to the state qu.
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5.2.1 Transitions to q ∈ Q̄ . We present two approaches to solving
the values for (14). The first approach is based on Karush-Kuhn-

Tucker (kkt) conditions [4], which shed light into the optimization
problem and lays down the conditions on where to look for the
optimal points, giving geometric intuition. This method boils down
to solving systems of non-linear equations, which turns out to be
efficient and exact for low-dimensional systems. In the second ap-
proach, we show that the problem reduces to a convex optimization
problem, allowing the adoption of existing optimization tools and
hence making the approach suitable for high-dimensional systems.

KKT Optimization Approach: In the next theorem, we use
the result of Corollary 1 and the kkt conditions [4] to compute the
exact values for (14).

Theorem 1. For polytopic regions qi ,qj ⊂ Rm and proper trans-

formation matrix Ta with respect to qj , let

Post(q′i ,Ta ) = {y ∈ R
m | Hy ≤ b},

where q′i = Post(qi , F (a)), H ∈ Rk×m , b ∈ Rm , and k ≥ m + 1, and
introduce the following conditions:

• Condition 1: y is at the center of Post(qj ,Ta ), i.e.,

y = (
v
(1)
u +v

(1)
l

2
, . . . ,

v
(m)
u +v

(m)
l

2
).

• Condition 2: y is a vertex of Post(q′i ,Ta ).
• Condition 3: y is on the boundary of Post(q′i ,Ta ), where r ≥ 1
of the k half-spaces that define Post(q′i ,Ta ) intersect, and

∇f (y) = H̄T µ,

for vector µ = (µ1, . . . , µr ) of non-negative constants, and
submatrix H̄ ∈ Rr×m that contains only the rows of H that

correspond to the r -intersecting half-spaces at y.

• Condition 4: y is as in Condition 3, and

∇f (y) = −H̄T µ,

for vector µ = (µ1, . . . , µr ) of non-negative constants, and H̄
is defined as in Condition 3.

Then, it follows that the point y ∈ Post(q′i ,Ta ) that satisfies Condi-
tion 1 necessarily maximizes f (y). If Condition 1 cannot be satisfied,

then the maximum is necessarily given by one of the points that sat-

isfy Condition 2 or 3. Furthermore, the point y ∈ Post(q′i ,Ta ) that
minimizes f (y) necessarily satisfies Condition 2 or 4.

Theorem 1 identifies the arguments (pointsy ∈ Post(q′i ,Ta )) that
give rise to the optimal values ofT in (14). Then, the actual optimal
values of T can be computed by (18) as guaranteed by Corollary 1.
Thus, from Theorem 1, an algorithm can be constructed to generate
a set of finite candidate points based on Conditions 1-4 and to obtain
the exact values of (14) by plugging those points into (18).

In short, Condition 1 maximizes the unconstrained problem and
gives rise to the global maximum. Hence, if the center of qj is
contained in Post(q′i ,Ta ), no further check is required for maxi-
mum. If not, the maximum is given by a point on the boundary
of Post(q′i ,Ta ). It is either a vertex (Condition 2) or a boundary
point that satisfies Condition 3. The minimum is always given by a
boundary point, which can be either a vertex or a boundary point
that satisfies Condition 4. Note that Conditions 3 and 4 are similar
and both state that the optimal value ofT is given by a point where

the gradient of T becomes linearly dependent on the vectors that
are defined by the intersecting half-spaces of Post(q′i ,Ta ) at that
point. Each of these two conditions defines a system ofm equations
and r < m variables, which may have a solution only if some of the
equations are linear combinations of the others.

The above algorithm computes the exact values for the transition
probability bounds. It is computationally efficient for small dimen-
sional systems, e.g., m < 4. For large m, however, the efficiency
drops because the number of boundary constraints that need to
be checked and solved for in Conditions 3 and 4 increases, in the
worst case, exponentially withm. Below, we propose an equivalent
but more efficient method to compute min and max of T for large
dimensional systems, e.g.,m ≥ 4.

Convex Optimization Approach: In order to show how upper
and lower bounds of f (y) can be efficiently computed using convex
optimization tools, we need to introduce the definition of concave
and log-concave functions.

Definition 12 (Concave Function). A function д : Rm → R is

said to be concave if and only if for y1,y2 ∈ Rm , λ ∈ [0, 1]

д(λy1 + (1 − λ)y2) ≥ λд(y1) + (1 − λ)д(y2).

Definition 13 (Log-concave Function). A function д : Rm →
R is said to be log-concave if and only if loд(д) is a concave function.
That is, for y1,y2 ∈ Rm , λ ∈ [0, 1]

д(λy1 + (1 − λ)y2) ≥ д(y1)λд(y2)(1−λ).

In the following proposition, we show that f (y), as defined in Corol-
lary 1, is log-concave. This enables efficient computation of the up-
per and lower bounds of f (y) through standard convex optimization
techniques such as gradient descent or semidefinite programming
[? ]. Hence, we can make use of readily available software tools, e.g.,
NLopt [? ], which have been highly optimized in terms of efficiency
and scalability.

Proposition 2. f (y), as defined in Corollary 1, is a log-concave

function.

5.2.2 Transitions to sink state qu. Here, we focus on the transition
probabilities to state qu in (10) and (11). To this end, we need to
compute

max
x ∈qi

T (X | x ,a), min
x ∈qi

T (X | x ,a). (20)

We can efficiently compute bounds for these quantities by using
the results obtained above. The following proposition shows this
efficient method of computation.

Proposition 3. Let Q̌a
and Q̂a

be two sets of polytopic regions in

mode a such that ⋃
q∈Q̌a

q ⊆ X ⊆
⋃

q∈Q̂a

q,

and Ta be a proper transformation function for every q ∈ Q̌a ∪ Q̂a
,

and call

f (y,q) = 1
2m

m∏
i=1

(
erf(

y(i) −v(i)l,q
√

2
) − erf(

y(i) −v(i)u,q
√

2
)
)
, (21)
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where vl,q and vu,q are as in (15) for q. Then, it holds that

max
x ∈qi

T (X | x ,a) ≤ max
y∈Post(q′i ,Ta )

∑
q∈Q̂a

f (y,q), (22)

min
x ∈qi

T (X | x ,a) ≥ min
y∈Post(q′i ,Ta )

∑
q∈Q̂a

f (y,q), (23)

where q′i = Post(qi , F (a)).
Intuitively, Proposition 3 states that, with a particular choice of

discretization, i.e., a grid in the transformed space, the transition
probability toX is equal to the sum of the transition probabilities to
the discrete regions, where each discrete transition kernel is given
by the close-form function f (y,q) in (21). If X cannot be precisely
discretized with a grid (in the transformed space), then the upper
and lower bounds of the transition probabilities are given by the
over- and under-approximating grids (Q̂a and Q̌a ), respectively.

Remark 3. For the computation of the values in (22) and (23),
Proposition 2 can be applied, making both methods of kkt and convex

optimization applicable.

6 STRATEGY SYNTHESIS AS A GAME

Recall that our objective is, given the compact set X and a bltl or
csltl formula φ, to compute a strategy forH that maximizes the
probability of satisfying φ without exiting X . The imdp abstraction
I, as constructed above, captures (possibly conservatively) the
behavior of the shs H with respect to the regions of interest R
within X , and the probabilities of exiting X are encompassed via
the state qu. Since state qu is absorbing, the paths of I are not
allowed to exit and re-enter X ; as such, the analysis on I narrows
the focus to dynamics within set X , as desired. Therefore, we can
focus on finding a strategy for I that is robust against all the
uncertainties (errors) introduced by the discretization of A×X and
which maximizes φ.

The uncertainties in I can be viewed as the nondeterministic
choice of a feasible transition probability from one imdp state to
another under a given action. Therefore, we interpret a synthesis
task over the imdp as a 2-player stochastic game, where Player 1
chooses an action a ∈ A at state q ∈ Q , and Player 2 chooses a
feasible transition probability distribution γaq ∈ Γaq . Towards robust
analysis, we set up this game as adversarial: the objectives of Players
1 and 2 are to maximize and minimize the probability of satisfying
φ, respectively. Hence, the goal becomes to synthesize a strategy
for Player 1 that is robust against all adversarial choices of Player 2
and maximizes the probability of achieving φ.

In order to compute this strategy, we first translate φ over ϒ into
its equivalent formula φ̄ over ϒ̄. Then, we construct a determinis-

tic finite automaton (dfa) Aφ̄ that precisely accepts all the good
prefixes that satisfy φ̄ [15].

Definition 14 (dfa). A dfa constructed from a csltl or bltl

formula φ̄ is a tuple Aφ̄ = (Z , 2ϒ̄,τ , z0,Zac), where Z is a finite set

of states, 2ϒ̄ is the set of input alphabets, τ : Z × 2ϒ̄ → Z is the

transition function, z0 ∈ Z is the initial state, and Zac ⊆ Z is the set

of accepting states.

A finite run of Aφ̄ on a trace ξ = ξ1 · · · ξn , where ξi ∈ 2ϒ̄ , is a
sequence of states µ = z0z1 . . . zn with zi = τ (zi−1, ξi ) for i =

1, . . . ,n. Run µ is called accepting if µn ∈ Zac. Trace ξ |= φ̄ iff its
corresponding run µ in Aφ̄ is accepting.

Next, we construct the product imdp Iφ̄ = I × Aφ̄ , which is a
tuple Iφ̄ = (Qφ̄ ,Aφ̄ , P̌φ̄ , P̂φ̄ ,Qφ̄ac), where

Qφ̄ = Q × Z , Aφ̄ = A, Qφ̄ac = Q × Zac,

P̌φ̄ ((q, z),a, (q′, z′)) =
{

P̌(q,a,q′) if z′ = τ (z,L(q′))
0 otherwise,

P̂φ̄ ((q, z),a, (q′, z′)) =
{

P̂(q,a,q′) if z′ = τ (z,L(q′))
0 otherwise,

for all q,q′ ∈ Q , a ∈ A, z ∈ Z andQφ̄ac is the set of accepting states
with respect to the product imdp. Intuitively, Iφ̄ contains both I
andAφ̄ and hence can identify all the paths of I that satisfy φ̄, i.e.,
the satisfying paths terminate in Qφ̄ac since their corresponding
Aφ̄ runs are accepting. Therefore, the synthesis problem reduces to
computing a robust strategy on Iφ̄ that maximizes the probability
of reachingQφ̄ac. This problem is equivalent to solving themaximal

reachability probability problem [17, 22? ] as explained below.
Given a strategy σ on an imdp, the probability of reaching a

terminal state from each state is necessarily a range for all the
available adversarial choices of Player 2. Let p̌σ (q) and p̂σ (q) denote
lower and upper bounds for the probability of reaching a state in
Qφ̄ac starting from q ∈ Qφ̄ under σ . Derived from the Bellman
equation, we can compute the optimal lower bound by recursive
evaluations of

p̌σ
∗(q) =


1 if q ∈ Qφ̄ac
max
a∈A(q)

min
γ aq ∈Γaq

∑
q′∈Qφ̄

γaq (q′)p̌σ
∗(q′) otherwise, (24)

for all q ∈ Qφ̄ . Each iteration of this Bellman equation involves a
minimization over the adversarial choices, which can be computed
through an ordering of the states of Iφ̄ [10, 17], and a maximization
over the actions. This Bellman equation is guaranteed to converge in
finite time [17, 22] and results in the lower-bound probability p̌σ

∗(q)
for each q ∈ Qφ̄ and in a stationary (memoryless in the product)
strategy σ ∗. The upper bounds are similarly given by recursive
evaluations of

p̂σ
∗(q) =


1 if q ∈ Qφ̄ac

max
γ σ ∗q ∈Γσ

∗
q

∑
q′∈Qφ̄

γσ
∗

q (q′)p̂σ
∗(q′) otherwise, (25)

which is also guaranteed to converge in finite time.
The optimal strategy σ ∗ onIφ̄ can be mapped onto the states and

actions of the abstraction imdp I, resulting in a (history-dependent)
strategy. By construction, then the optimal lower and upper proba-
bility bounds of satisfying φ from the states of I are:

p̌σ
∗

φ (q) = p̌σ
∗((q, z0)), p̂σ

∗
φ (q) = p̂σ

∗((q, z0)), (26)

for all q ∈ Q of I.
The complexity of the above strategy synthesis algorithm is

polynomial in the size of the imdp Iφ̄ [17, 22] and exponential in
the size of the formula φ (in the worst case) [15]. Note that the size
of φ used to express the properties of shs is typically small.
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7 CORRECTNESS

We show that the strategy σ ∗ computed over I can be refined over
(mapped onto)H and the lower probability bound p̌σ

∗
φ on I always

holds for the hybrid system H. The upper bound p̂σ
∗

φ also holds
for H if the discretization respects the regions in R. In the case
that the discretization is not R-respecting, a modified upper bound
that holds forH can be computed with a small additional step as
detailed below.

Let J : S → Q be a function that maps the hybrid states s ∈ S to
their corresponding discrete regions (states of I), i.e, J (s) = q ∈ Q
if s ∈ q. With a slight abuse of notations, we also use J to denote the
mapping from the finite paths ofH to their corresponding paths of
I, i.e.,

ωkH = s0s1 . . . sk ⇒ J (ωkH) = J (s0)J (s1) . . . J (sk ).

Then, the imdp strategy σ ∗ correctly maps to a switching strategy
σ ∗H forH via

σ ∗H(ω
k
H) = σ

∗(J (ωkH)). (27)
The following theorem shows that for a given φ, the probability

bounds p̌σ
∗

φ and p̂σ
∗

φ are guaranteed to hold for the process s under
σ ∗H as constructed above.

Theorem 2. Given a shs H, a continuous set X , and a csltl or

bltl formula φ, let I be the imdp abstraction of H as described in

Section 4 through a discretization that respects the regions of interest in

R. Further, let σ ∗ be the strategy on I computed by (24) and (25) with
probability bounds p̌σ

∗
φ and p̂σ

∗
φ in (26). Refine σ ∗ into a switching

strategy σ ∗H as in (27). Then, for any initial hybrid state s0 ∈ S , where

s0 ∈ q0 ∈ Q , it holds that

P(φ | s0,X ,σ
∗
H) ∈

[
p̌σ
∗

φ (q0), p̂σ
∗

φ (q0)
]
. (28)

Note that an assumption in Theorem 2 is that the discretization
Q respects the regions in R. If this assumption is violated, then the
lower bound p̌σ

∗
φ still holds, unlike the upper bound p̂σ

∗
φ . That is be-

cause we design the labeling function L of I to under-approximate
the regions of interest r ∈ R, making the upper bound p̂σ

∗
φ valid

with respect to the under-approximate representation of R by L
but possibly under-approximated with respect to the actual R. To
compute an upper bound that accounts for this, we need to design
a new labeling function that over-approximates the labels of each
region, as follows. Let L′ : Q → ϒ̄ be this labeling function with

pi ∈ L′(q) ⇔ ∃(a,x) ∈ q s.t. x ∈ ri , (29)

where pi ∈ ϒ̄ is the associated proposition to ri ∈ R. Then, we can
compute the over-approximated upper bound p̂′σ

∗
φ via (25) on the

product imdp I ′φ̄ constructed using L′.

Lemma 1. If abstraction I is constructed through a discretization

that does not respect the regions in R, then

P(φ | s0,X ,σ
∗
H) ∈

[
p̌σ
∗

φ (q0), p̂′σ
∗

φ (q0)
]
, (30)

where p̂′σ
∗

φ is computed via (25) using the labels in (29).

Theorem 2 and Lemma 1 guarantee that the satisfaction probabil-
ity of φ for the process s, solution of the shsH, is contained in the
probability interval computed on the abstraction I. The size of this

interval depends on the difference of the one-step transition proba-
bility bounds of P̌ and P̂ as well as the embedded approximations
in the labeling functions L and L′ in I, which can be viewed as the
error induced by space discretization ofH cast into the abstraction
I. This error can be tuned by the size of the discretization: in partic-
ular, in the limit of an infinitely fine grid, the error of the abstraction
goes to zero, and the imdp abstraction is refined into an mdp, namely
for all q,q′ ∈ Q and a ∈ A(q), P̌(q,a,q′) → P(q,a,q′) ← P̂(q,a,q′).

Remark 4. In practice, the interest in synthesis problems is typi-

cally on deriving lower bounds for the probability, whereas the upper

bound computation is useful for error analysis.

Remark 5. With a simple modification, the proposed framework

can be used for verification of shsH against property φ: (i) compute

the lower-bound probability by replacing maxa∈A(q) with mina∈A(q)
in (25) on abstraction I with labeling function L, and (ii) compute

the upper-bound probability by replacing minγ aq ∈Γaq with maxγ aq ∈Γaq
in (25) on abstraction I with labeling function L′.

8 EXPERIMENTAL RESULTS

We implement the abstraction and synthesis algorithms and test
their performance on three case studies. We first present a two
dimensional stochastic process with a single mode and perform
a comparison against the algorithms and tool faust2 [9] in Case
Study 1. Next, we consider a two dimensional, two-mode model
and show the synthesis over unbounded-time properties in Case
Study 2. Last, we analyze the scalability of the proposed techniques
over increasing continuous dimension of the shs in Case Study 3.

The implementation of the abstraction algorithm is in matlab
and c++: more precisely, the approach based on kkt method is in
matlab (proof of concept), and the convex optimization method
with gradient decent (gd) is in c++. The imdp synthesis algorithm
is also implemented in c++. The experiments are run on an Intel
Core i7-8550U CPU at 1.80GHz × 8 machine with 8 GB of RAM.

8.1 Case Study 1 - Formal Verification

We consider a stochastic process with dynamics in (1) and a single
discrete mode (A = {a1}), where

F (a1) =
(
0.85 0

0 0.90

)
, G(a1) =

(
0.15 0

0 0.05

)
,

with X = [−1, 1] × [−1, 1] and safety property

φ1 = G≤kX .

We compare the verification results of the above model using
our method against those of the state-of-the-art tool faust2 [9].
Namely, we compare probability of satisfaction of φ1, computation
times, and errors for a range of values for time horizon k and grid
sizes. To obtain the imdp abstraction of our method, we used a
uniform grid discretization per Sec. 5. Tool faust2 abstracts the
model into an mdp and treats the error as a separate parameter.
The grid generated in faust2 is based on computation of the global
Lipschitz constant via integrals [9]. We define the error of the
imdp method to be εq = p̂∗φ (q) − p̌∗φ (q) for each state, and the
global error to be εmax = maxq∈Q εq . Similarly, for faust2 the
resulting error corresponds to the maximum error over all the
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states. The faust2 tool is written in matlab and run over this
platform, however additionally for fair comparison we have re-
implemented the abstraction based on faust2 in the c++ language
(cf. corresponding lines in Table 1).

The results are shown in Table 1 for k = 2 and various grid
sizes. We saturate conservative errors output by faust2 that are
greater than 1 to this value. For the particular grid |Q | = 3722,
the lower bound probabilities of satisfying φ1 are shown in Fig. 3
within Appendix B. As evident in Table 1, our approach greatly
outperforms the state of the art. With respect to the error gener-
ated for the same grid size, our method has significantly (an order
of magnitude) smaller error than faust2. Our imdp method also
requires lower computation times. We also note that, as guaranteed
by the theory (Theorem 1 and Proposition 2), both kkt and gd
approaches compute the same error.

Tool Impl. |Q̄ | Time taken Error

Method Platform (states) (secs) εmax

imdp (kkt) matlab 361 19.789 0.211
imdp (gd) c++ 361 29.003 0.211
faust2 matlab 361 108.265 1.000
faust2 c++ 361 136.71 1.000
imdp (kkt) matlab 625 145.563 0.163
imdp (gd) c++ 625 117.741 0.163
faust2 matlab 625 285.795 1.000
faust2 c++ 625 302.900 1.000
imdp (kkt) matlab 1444 4464.783 0.109
imdp (gd) c++ 1444 510.920 0.109
faust2 matlab 1444 1445.441 1.000
faust2 c++ 1444 1201.950 1.000
imdp (kkt) matlab 2601 28127.256 0.082
imdp (gd) c++ 2601 2939.050 0.082
faust2 matlab 2601 5274.578 0.995
faust2 c++ 2601 3305.490 0.995
imdp (kkt) matlab 3721 Time out3 -
imdp (gd) c++ 3721 3973.28 0.068
faust2 matlab 3721 11285.313 0.832
faust2 c++ 3721 7537.750 0.832

Table 1: Comparison of verification results of our imdp algo-

rithms against faust
2
for φ1 with k = 2.

In Fig. 1, we show the error of each method as a function of
the time horizon k in φ1. From these figures it is evident that our
approach again greatly outperforms faust2. That is because our
method embeds the error in the abstraction and performs computa-
tions according to feasible transition probabilities, which prevents
the error from exploding over time, whereas the error of faust2

keeps increasing monotonically with the time horizon. An interest-
ing aspect in Fig. 1a is that the error of our method goes to zero as
k increases. That is because the system under consideration is an
unbounded Gaussian process, and despite its stable dynamics, the
probability of it remaining within the bounded set X approaches
zero as time grows larger. This is meaningfully captured by the up-
per and lower probability bounds of our method. On the other hand,
faust2 is not able to capture this behavior and its error explodes.
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Figure 1: Maximum error incurred in satisfying φ1 as a func-
tion of time horizon k .

8.2 Case Study 2 - Strategy synthesis

We consider a 2-dimensional shs with two modes A = {a1,a2}:

F (a1) =
(
0.1 0.9
0.8 0.2

)
, G(a1) =

(
0.3 0.1
0.1 0.2

)
,

F (a2) =
(
0.8 0.2
0.1 0.9

)
, G(a2) =

(
0.2 0
0 0.1

)
.

Note that F (a1) and F (a2) are not asymptotically stable, as they both
have one eigenvalue equal to 1. We are interested in synthesizing a
switching strategy that maximizes the probability of satisfying

φ2 = ¬red U дreen.

within the set X = [−2, 2] × [−2, 2]. The regions associated with
the labels red and green are depicted in Fig. 2a.

Note that φ2 has an unbounded time horizon, hence, faust2

cannot be applied. We make use of an adaptive grid, inspired by
[8], such that the resulting cells have maximum and minimum
sizes in the original space of ∆xmax = 0.13 and ∆xmin = 0.05,
respectively. Our adaptive-grid algorithm first over-approximates
Post(X ,Tai ) for i ∈ {1, 2} by using a uniform grid with the allowed
maximum-sized cells. It refines the cells that belong to the green
and red regions in the original space, up to the resolution of the
minimum-sized cells. Fig. 2c and 2d show the discretization of
modes a1 and a2, respectively. The generated imdp has |Q | = 3612
states with |Qa1 | = 1862 and |Qa2 | = 1750. Note that in mode a1
the cells associated with the label ¬red under-approximate X \ red ,
i.e., red is over-approximated, and the regions associated with the
label green under-approximate the green region. This is due to the
transformation function Ta1 that includes a rotation in addition to
a translation, which does not respect the regions of interest in R.

We run the synthesis algorithm to obtain the robust strategy σ ∗φ2
with the corresponding lower probability bounds. For each state,
the lower probability bounds are depicted in Fig. 2c and 2d. The
total time to compute the abstraction and to generate σ ∗φ2 is 5434
seconds. Fig. 2a shows the simulation of two trajectories using σ ∗φ2
with a starting point of (2,−0.5) within mode a1 and (−2, 2) within
mode a2 respectively. In both instances, the property φ2 is satisfied.

We also analyze the errors of our method for φ2 as a function
of time horizon for various grid sizes. Fig. 2b shows the results.
It can be seen that, for a fixed k , εmax decreases monotonically
with the number of states (similar to Fig. 1a in Case Study 1), and
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Figure 2: Synthesis results for φ2 with (a) original set X
with simulated trajectories under σ ∗φ2 , (b) maximum error

incurred in satisfying φ2 as function of time horizon k , and
lower bound probabilities of satisfying φ2 for modes (c) a1
and (d) a2.

εmax converges to a steady-state value for each grid size as the
time horizon increases.

8.3 Case Study 3 - Scaling in continuous

dimension

We consider a stochastic process with A = {a1} (single mode) and
dynamics characterised by F (a1) = −0.95Id and G(a1) = 0.1Id ,
where d corresponds to the continuous dimension of the stochastic
process (number of continuous variables) and X = [−1, 1]d . We are
interested in checking the specification

φ3 = G≤50X

as the continuous dimension d of the model varies. We use a uni-
form grid characterized by parameter ∆x = 1 per side. We compute
the corresponding lower- and upper-bound probabilities of satisfy-
ing φ3 and list the number of states required for each dimension
together with the associated εmax in Table 2. The method generates
abstract models with manageable state spaces, and displays scalabil-
ity with respect to the continuous dimension d of the shs to models
with more than ten variables, which is a marked improvement over
state-of-the-art tools [9].

9 CONCLUSIONS

This work has presented a theoretical and computational technique
for analysis and synthesis of discrete-time stochastic hybrid sys-
tems. A suitable choice of the abstraction framework results in
exact error bounds, leading to precise and compact abstractions
for the synthesis tasks. The experimental results illustrate that
the proposed framework greatly outperforms the state of the art

Dimensions |Q̄ | Time taken Error

(d) (states) (secs) (εmax )
2 4 0.014 0.030
3 14 0.088 0.003
4 30 0.345 0.004
5 62 1.576 0.003
6 125 6.150 0.004
7 254 23.333 0.003
8 510 88.726 0.003
9 1022 367.133 0.003
10 2046 1787.250 0.003
11 8190 25500.000 0.003

Table 2: Verification results of our imdp approach for φ3.

time-wise and that is more scalable, thus mitigating the state-space
explosion problem. Whilst the framework is tailored to bltl and
csltl properties, it can be extended to verification and synthesis
for more complex and even multi-objective [12] properties.
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A PROOFS

A.1 Proof of Proposition 1

Proof. For a fixed a ∈ A, recall that

T (q | x ,a) =
∫
q
N(t | F (a)x ,Covx(a))dt ,

whereCovx(a) = GT (a)CovwG(a). By applying awhitening through
the transformationmatrixTa = Λ

− 1
2

a VT
a , we obtain thatTaCovx(a)TTa =

I, where I is the identity matrix. Thus, by working in the trans-
formed space induced by Ta , we obtain

T (q | x ,a) =
∫
Post(q,Ta )

N
(
t | Ta F (a)x , I

)
dt .

Under the assumption that Post(q,Ta ) is a hyper-rectangle, the
above multidimensional integral can be separated and expressed as
a product ofm integrals of uni-dimensional normal distributions:

T (q | x ,a) =
∫
Post(q,Ta )

N
(
t | Ta F (a)x , I

)
dt

=

∫ v (1)u

v (1)l
· · ·

∫ v (m)u

v (m)l

N
(
t1 | y(1), 1

)
· · · N

(
tm |

y(m), 1
)
dt1 · · ·dtm

=

m∏
i=1

∫ v (i )u

v (i )l
N

(
ti | y(i), 1

)
dti

=

m∏
i=1

1
2

(
erf(

y(i) −v(i)l√
2
) − erf(y

(i) −v(i)u√
2
)
)
,

where y = Ta F (a)x . �

A.2 Proof of Theorem 1

Proof. We first consider the maximum case and then discuss
the minimum case. The KKT conditions guarantee that if y ∈
Post(q′i ,Ta ) is a local maximum for f , then there must exist a vector
of constants µ = (µ1, . . . , µk ) such that ∇f (y) = HT µ, µi ≥ 0 for
all i ∈ {1, ...,k}, and µi (

∑m
j=1 H (i, j)y(j) − bi ) = 0, where H (i, j) is

the component in the i-th row and j-th column of matrix H . Note
that we have a constant µi , i ∈ {1, . . . ,k}, for each of the half-paces
defining Post(q′i ,Ta ). Thus, there are three possible cases:

Case 1: x∗ is not in the boundary of Post(q′i ,Ta ). In this case
the KKT conditions imply that y is a maximum only if ∇f (y) = 0.
For a normal distribution with identity covariance, this point is

exactly y =
(v (i )u +v (1)l

2 , ...,
v (m)u +v (m)l

2
)
. If y ∈ Post(q′i ,Ta ), then this

is the global maximum, because it is the global maximum of the
unconstrained problem.

Case 2: x∗ is a vertex of Post(q′i ,Ta ). We call a vertex an inter-
section ofm half-spaces. As a consequence, we have that the KKT
conditions are satisfied in y, vertex of Post(q′i ,Ta ), if and only if
∇f (y) = H̄T µ, where H̄ is the submatrix that contains only them
rows of H representing the half-spaces interesting at y, and vector
µ contains only the m corresponding constants. Thus, we have a
system ofm equations andm variables that has solution for µi ∈ R.
However, since the set of vertices is finite, it is generally faster to
just include all the vertices as possible candidate solutions instead
of solving the system of equations.

Case 3: y is in the boundary of Post(q′i ,Ta ), but is not a ver-
tex. In this case only r < m of the half-spaces in H intersect at
y. Thus, if y is a maximum then ∇f (y) = H̄T µ, where H̄ is the
submatrix of H containing the r < m half-spaces intersecting at y,
and µ contains only the r corresponding constants. Note that this
is a system with more equations than variables. Therefore, only
when some of constraints become linearly dependent, there may
be a solution for y ∈ Post(q′i ,Ta ), if at all.

The minimum case is identical except that condition ∇f (y) =
HT µ is replaced with ∇f (y) = −HT µ. �

A.3 Proof of Proposition 2

Proof. By Definition we have

f (y) =
m∏
i=1

f̄ (y(i) | v(i)l ,v
(i)
u ),

where

f̄ (y(i) | v(i)l ,v
(i)
u ) =

1
2
(
erf(

y(i) −v(i)l√
2
) − erf(y

(i) −v(i)u√
2
)
)

with v(i)u > v
(i)
l . Now, since a product of log-concave functions

is a log-concave function itself, to show that f (y) is log-concave,
it is enough to show that f̄ (y(i) | v(i)l ,v

(i)
u ) is log-concave for i ∈

{1, ...,m}. In order to do that we first need to observe that

f̄ (y(i) | v(i)l ,v
(i)
u ) =

∫ y (i )−v (i )l

y (i )−v (i )u
N(t | 0, 1)dt .

That is, f̄ induces a standard Gaussian probability measure P̄ . We
denote with P̄([y(i) −v(i)u ,y(i) −v

(i)
l ]) the resulting probability for

convex Borel set [y(i) −v(i)u ,y(i) −v
(i)
l ]. By rearranging terms, for

λ ∈ [0, 1],y1,y2 ∈ R, we finally obtain

f̄ (λy1 + (1 − λ)y2 | v(i)l ,v
(i)
u ) =

P̄(λ[y1 −v(i)u ,y1 −v(i)l ] + (1 − λ)[y2 −v(i)u ,y2 −v(i)l ]) ≥

P̄([y1 −v(i)u ,y1 −v(i)l ])
λ P̄[y2 −v(i)u ,y2 −v(i)l ])

1−λ =

f̄ (y1 | v(i)l ,v
(i)
u )λ f̄ (y2 | v(i)l ,v

(i)
u ))(1−λ),

where the above inequality is due to Theorem 2 in [20]. �
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A.4 Proof of Proposition 3

Proof. For the upper bound, we have that for qi ∈ Qsafe and
a ∈ A,

max
x ∈qi

T (X | x ,a) ≤ max
x ∈qi

∫
X
N(z | F (a)x ,Covx(a)dz

= max
y∈Post(q′i ,Ta )

∫
Post(X ,Ta )

N(z | y, I)dz

≤ max
y∈Post(q′i ,Ta )

∑
q∈Q̄a

∫
Post(q,Ta )

N(z | y, I)dz

= max
y∈Post(q′i ,Ta )

∑
q∈Q̄a

f (y,q).

For the lower bound, similarly to the upper bound, we have that

min
x ∈qi

T (X | x ,a) ≥ min
y∈Post(q′i ,Ta )

∑
q∈Qa

f (y,q).

�

A.5 Proof of Theorem 2

For each φ, let Aφ̄ = (Z , 2ϒ̄,τ , z0,Zac) be the dfa correspondent
to φ with initial state z0. Then, P(φ | x ,X ,σ ∗H) can be computed
on the product stochastic hybrid system Hφ = H × Aφ̄ = (A ×
Z , Fφ ,Gφ , ϒ,Lφ ), where Lφ (x , (a, z)) = L((a,x)), Fφ (a, z) = F (a)
and Gφ (a, z) = G(a). We define the set of accepting states ofHφ as
Xac = X ×A × Zac. It is possible to show that P(φ | x ,X ,σ ∗H) can
be computed as the solution of the following Bellman equation

V (z0,x ,X ,σ
∗
H) =

1 if (x ,σ ∗H(x), z0) ∈ Xac

0 if x < X∫
X f (x ′ |x ,σ ∗H(x0))V (τ (z0,L(x ,σ ∗H(x)),x

′,X ,σ ∗H)dx

(31)

where f (x ′ |x , σ ∗H(x0)) the density function of transition kernel T
and, with an abuse of notation, we call σ ∗H(x0) the action resulting
from the application of the (stationary) strategy σ ∗H in x0. For q ∈ Q

call
V̆ σ ∗H (z,q,X ,σ ∗H) = min

x ∈q
V (z,x ,X ,σ ∗H).

Then, it follows that

V̆ σ ∗H (z0,q,X ,σ
∗
H) =

1 if there exists x ∈ q s.t. (x ,σ ∗H(x), z0) ∈ Xac

0 if x < X

minx ∈q
∫
X f (x ′ |x ,σ ∗H(x))V (τ (z0,L(x ,σ ∗H(x)),x

′,X ,σ ∗H)dx ′

Then, because for each x1,x2 ∈ q it holds thatσ ∗H(x1) = σ ∗H(x2) and
Qφ is a discretization of X that respects the propositional regions,
we obtain

V̆ σ ∗H (z0,q,X ,σ
∗
H) ≤

1 if there exists x ∈ q s.t. (x ,σ ∗H(x), z0) ∈ Xac

0 if x < X

minx ∈q
∑
q∈Qφ T (q |x ,σ ∗H(x))V̆

σ ∗H (τ (z0,L(x ,σ ∗H(x)),x
′,X ,σ ∗H)

The latter expression is exactly (24) for a fixed strategy σ ∗H . Similar
approach can be used to prove that the solution of (31) is upper
bounded by (25).

A.6 Proof of Lemma 1

Qφ is a discretization of X that does not respect the propositional
regions R, and the labeling function L of I introduces an under
approximation of those regions. Similar to the proof of Theorem 2, a
product shsHφ can be constructed. By replacing the discretization
Qφ in the Bellman equation and noting that L under-approximates
R, it holds that V̆ σ ∗H (z0,q,X ,σ ∗H) is an under-approximation of
P(φ | s0,X ,σ ∗H).

For the upper bound, note that the labeling function L′ over-
approximates the labels of each region. With the same derivation
as above but using L′ instead of L, it follows that

V̂ σ ∗H (z,q,X ,σ ∗H) ≥ P(φ | s0,X ,σ
∗
H),

where
V̂ σ ∗H (z,q,X ,σ ∗H) = max

x ∈q
V (z,x ,X ,σ ∗H),

and V (z,x ,X ,σ ∗H) is defined in (31).

B CASE STUDY 1

We present the lower bound probabilities of satisfying φ1 using
both imdp and faust2 based abstractions, for the particular grid
|Q | = 3722 in Fig. 3. This further highlights that our approach
greatly outperforms the state of the art with respect to probability
of satisfaction for the same size of the grid.

(a) imdp (b) faust
2

Figure 3: Lower bound probabilities of satisfying φ1 with |Q̄ |
= 3721 and k = 2.
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